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Constitutive modelling of the myocardium is a key step
IN understanding the coupled behaviour of the heart

Cardiac mechanics:

® involve complex geometry, boundary
conditions and heterogeneous
material properties

e are anisotropic, nonlinear and
viscoelastic

¢ include active contributions due to
filore contraction, which are coupled
to electro-chemical mechanisms

The multi-physics of a beating heart
http://youtu.be/8al ufvkRw-k



http://youtu.be/8aLufvkRw-k
http://youtu.be/8aLufvkRw-k

We are going to approach this in three steps
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Look at experimental data to motivate a model for
the passive response of the myocardium

Consider two ways of introducing the active
response due to cardiomyocyte contraction
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Relate the active contraction to
the underlying crossbridge kinetics



The mechanical behaviour of passive myocardium
IS nonlinear, orthotropic and viscoelastic
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Response of a typical pig myocardial specimen to simple shear

Dokos et al., 2002



Motivated by this data, we begin with a state-of-
the-art hyperelastic passive myocardium model
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Second Piola—Kirchhoff stress tensor

Holzapfel and Ogden, 2009



The Holzapfel-Ogden model fits the loading curve
of the experiments closely using eight parameters
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Holzapfel-Ogden model fit to experimental data

Holzapfel and Ogden, 2009



To capture the unload curve as well, we extend this
mModel to include viscous effects
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Volumetric-isochoric decomposition
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Simo, 1987



With two additional parameters related to
viscoelasticity, our model further captures the data
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The active stress approach is an intuitive way of
iIncorporating cardiomyocyte contraction
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Additional active contribution to the stress

Examples of the active stress tensor

Smith et al., 2004; Panfilov et al., 2005; Niederer and Smith, 2008; Pathmanathan et al., 2010



The active strain approach is another way of
iIncorporating cardiomyocyte contraction
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Examples of the active tensor (not necessarily a gradient)
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Introducing some intermediate configurations

Cherubini et al., 2010; Ambrosi et al., 2011; Nobile et al., 2012; Rossi et al., 2012



The active strain approach inherits the convexity of
the passive model, active stress does not
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The equilibrium equation reads: Div(P)=0; P = 3

To guarantee existence and uniqueness of the solution, we require VF € Lin™, VH # 0;
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Rank-one convexity condition for the active stress approach
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Rank-one convexity condition for the active strain approach
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Ambrosi and Pezzuto, 2011
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What does the convexity argument mean for the
orthotropic Holzapfel-Ogden model in particular?

1
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A numerical example where the active strain
formulation easily allows for large strains

Displ. Mag. (length)

Form of the active strain: Fa =1+ v f, ® fo + ( — 1) (S0 ® 8o + Ny ® N

Toy activation function within the physiological range: 7¢(t) = —0.15 [1 — sin(¢ — 37 /2)]



One straightforward way to define the activation
function IS In terms of known relations to other fields
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One recent example, Fla =1 4+vfo ® fo — 7So ® 8o, with the activation function:
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where, lo = (n(c§ — 1) (1(c5) — 1) and 5([Ca**]) = 5 + ~ arctan(5* log([Ca**]/ex)).
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Variation of the activation function with other fields

Cherubini et al., 2010; Nobile et al., 2012



We turn to classical continuum thermodynamics to
restrict the form of the activation function
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Free energy decomposed into passive mechanics, chemo-mechanical coupling, chemical kinetics and calcium regulation

Stalhand et al., 2011
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Classical arguments are used to arrive at constitutive
laws that a priori satisfy the dissipation inequality
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Coleman and Noll, 1963: Stalhand, 2011
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But how do these abstract re

biochemistry of force-generat

Regulatory Ca binding
affects activation only
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Regulatory unit activation and cross-bridge cycling
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A preliminary example demonstrating the coupling
between cross-bridge kinetics and the active strain
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A preliminary example demonstrating the coupling
between cross-bridge kinetics and the active strain
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Steady-state isometric tension at different [Ca?*] levels



Summarising remarks, and some points for discussion

e \Ve are building a chemo-mechanical continuum model for characterising and
studying the behaviour of the cardiac myocardium

¢ \\Ve use a viscoelastic passive model based on a modern hyperelastic law
¢ \Ve explored some arguments to choose the active strain approach

¢ \\Ve use continuum thermodynamics and biophysics to motivate the form of
the active strain



Summarising remarks, and some points for discussion

e \Ve are building a chemo-mechanical continuum model for characterising and
studying the behaviour of the cardiac myocardium

¢ \\Ve use a viscoelastic passive model based on a modern hyperelastic law
¢ \Ve explored some arguments to choose the active strain approach

¢ \\Ve use continuum thermodynamics and biophysics to motivate the form of
the active strain

e More work is needed In tying the abstract formulation to underlying biophysics

¢ [he importance of viscosity is not clear, but | am exploring its role in energy
dissipation and starting to look at whether this helps with numerical stability

e Much of the results you saw today were generated using open source Python
code, so ask me for it if you’d like to play too!

http://harishnarayanan.org/
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