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Constitutive modelling of the myocardium is a key step 
in understanding the coupled behaviour of the heart

• involve complex geometry, boundary 
conditions and heterogeneous 
material properties

• are anisotropic, nonlinear and 
viscoelastic

• include active contributions due to 
fibre contraction, which are coupled 
to electro-chemical mechanisms

Cardiac mechanics:

The multi-physics of a beating heart
http://youtu.be/8aLufvkRw-k

http://youtu.be/8aLufvkRw-k
http://youtu.be/8aLufvkRw-k


We are going to approach this in three steps

Look at experimental data to motivate a model for 
the passive response of the myocardium

Consider two ways of introducing the active 
response due to cardiomyocyte contraction

Relate the active contraction to 
the underlying crossbridge kinetics
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The mechanical behaviour of passive myocardium 
is nonlinear, orthotropic and viscoelastic

Dokos et al., 2002

Response of a typical pig myocardial specimen to simple shear



Motivated by this data, we begin with a state-of-
the-art hyperelastic passive myocardium model

Holzapfel and Ogden, 2009
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The Holzapfel-Ogden model fits the loading curve 
of the experiments closely using eight parameters

Holzapfel and Ogden, 2009

Holzapfel-Ogden model fit to experimental data



To capture the unload curve as well, we extend this 
model to include viscous effects

Simo, 1987

Volumetric-isochoric decomposition

Decoupled representation of the free-energy function

Elastic and viscoelastic contributions to the stress

Evolution equation for the internal stress variables

Specific forms for the strain energy functions
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With two additional parameters related to 
viscoelasticity, our model further captures the data

Experimental data from Dokos et al., 2002 ⌧1 �1Our viscoelastic model with      = 1.5 s,      = 0.25



The active stress approach is an intuitive way of 
incorporating cardiomyocyte contraction

Examples of the active stress tensor

Additional active contribution to the stress

Smith et al., 2004; Panfilov et al., 2005; Niederer and Smith, 2008; Pathmanathan et al., 2010

P a = Ta FC�1

P a = Ta Ff0 ⌦ f0

P a = Taff Ff0 ⌦ f0

+ Tass Fs0 ⌦ s0

+ Tann Fn0 ⌦ n0
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The active strain approach is another way of 
incorporating cardiomyocyte contraction

Introducing some intermediate configurations

First Piola-Kirchhoff stress tensor

Examples of the active tensor (not necessarily a gradient)

Cherubini et al., 2010; Ambrosi et al., 2011; Nobile et al., 2012; Rossi et al., 2012
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The active strain approach inherits the convexity of 
the passive model, active stress does not

Rank-one convexity condition for the active strain approach

Rank-one convexity condition for the active stress approach

Ambrosi and Pezzuto, 2011

The equilibrium equation reads:

To guarantee existence and uniqueness of the solution, we require :
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What does the convexity argument mean for the 
orthotropic Holzapfel-Ogden model in particular?

Rossi et al., 2012

is the condition that needs to be satisfied.

Form of the active strain: F a = 1+ �ff0 ⌦ f0 +
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A numerical example where the active strain 
formulation easily allows for large strains

Form of the active strain: F a = 1+ �ff0 ⌦ f0 +
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Toy activation function within the physiological range: �f(t) = �0.15 [1� sin(t� 3⇡/2)]



One straightforward way to define the activation 
function is in terms of known relations to other fields

Cherubini et al., 2010; Nobile et al., 2012

Variation of the activation function with other fields
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We turn to classical continuum thermodynamics to 
restrict the form of the activation function

Stålhand et al., 2011

Active contraction tensor in terms of the contraction stretch
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Balance laws and entropy inequality
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Isothermal dissipation inequality

 ̇  P : Ḟ + Pa�̇a + Pc�̇

Free energy decomposed into passive mechanics, chemo-mechanical coupling, chemical kinetics and calcium regulation

 =  1(C, [f0, s0,n0]) +  2(�a,Ce, [f0, s0,n0],↵) +  3(↵) +  4(�)
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Classical arguments are used to arrive at constitutive 
laws that a priori satisfy the dissipation inequality

Coleman and Noll, 1963; Stålhand, 2011

Total stress of the passive tissue and elastic deformation of the cross-bridges
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But how do these abstract relationships relate to the 
biochemistry of force-generation at the filament level?

Regulatory unit activation and cross-bridge cycling

Rice et al., 2008

Evolution law for the chemical state

Elastic energy stored in cross-bridges
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A preliminary example demonstrating the coupling 
between cross-bridge kinetics and the active strain
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Solve for the active stretch using steady chemical state 



A preliminary example demonstrating the coupling 
between cross-bridge kinetics and the active strain
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Summarising remarks, and some points for discussion

• We are building a chemo-mechanical continuum model for characterising and 
studying the behaviour of the cardiac myocardium

• We use a viscoelastic passive model based on a modern hyperelastic law

• We explored some arguments to choose the active strain approach

• We use continuum thermodynamics and biophysics to motivate the form of 
the active strain



Summarising remarks, and some points for discussion

• We are building a chemo-mechanical continuum model for characterising and 
studying the behaviour of the cardiac myocardium

• We use a viscoelastic passive model based on a modern hyperelastic law

• We explored some arguments to choose the active strain approach

• We use continuum thermodynamics and biophysics to motivate the form of 
the active strain

• More work is needed in tying the abstract formulation to underlying biophysics

• The importance of viscosity is not clear, but I am exploring its role in energy 
dissipation and starting to look at whether this helps with numerical stability

• Much of the results you saw today were generated using open source Python 
code, so ask me for it if you’d like to play too!

http://harishnarayanan.org/ 
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