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This talk will examine how quantities related to the growth
of aneurysms can be accurately computed

What are aneurysms? What are the quantities
implicated in their growth?

How do we control the error in the
computation of these quantities?

What does this mean for
computational domains?



Accurate computation of the fluid shear stress and
circumferential stress is of principal importance

• Shear stress drives apoptotic behaviour of muscle cells

• Cells remodel arterial walls under constant tension

[Chien, 2007]
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We introduce our quantity of interest as a goal functional
through an auxiliary problem

• Abstract (linear) primal problem in weak form:

Find u ∈ V : a(u, v) = L(v) ∀ v ∈ V̂

• Finite element discretisation:

Find uh ∈ Vh : a(uh, v) = L(v) ∀ v ∈ V̂h

• Let M(u) be the goal functional we are interested in, e.g.,
◦ Shear stress on the aneurysm surface
◦ Point value of the fluid pressure
◦ Outward normal flow across a given area

We want M(u) −M(uh) ≤ TOL

• We introduce the goal functional through the dual problem:

Find z ∈ V̂ : a∗(z, v) = M(v) ∀ v ∈ V − Vh

[Eriksson and Johnson, 1988 & 1991]



Solution of the dual problem provides information about
the error in the goal functional

The error in the goal functional,

M(uh) −M(u) = M(uh − u)
= a∗(z, uh − u)
= a(uh − u, z)
= a(uh, z) − a(u, z)
= a(uh, z) − L(z)
= r(z)

is the residual of the dual solution! Furthermore,

r(z) = r(z − Πhz)
= (z − Πhz, r̂)
≤ ||Dz|| ||h r̂||

[Becker and Rannacher, 2001]



Applying the theory to the steady-state Stokes equations
provides estimates of the error

The Stokes equations for fluid flow:

div (σ(u, p)) + f = 0; div (u) = 0,

where σ(u, p) = 2 μ grads(u) − p 1

Rewritten in weak form, find (u, p) ∈ Vu × Vp:

a((u, p), (v, q)) = L((v, q)) ∀ (v, q) ∈ V̂u × V̂p,

where L = (v, f) and

a = (2 μ grad(v), grad(u)) − (div(v), p) + (q, div(u))

Introduce the goal functional, e.g.,
shear component of the traction:

M((u, p)) =

Z
Γ

(σ(u, p) n) · tds

The dual problem: Find (w, r) ∈ V̂u × V̂p :

a∗((w, r), (v, q)) = M((v, q)) ∀ (v, q) ∈ Ṽu × Ṽp

The resulting error indicators:
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The finite element scheme is implemented in FEniCS and
the error indicators are used to suitably refine the mesh

# Define function spaces

V = VectorFunctionSpace(mesh, "CG", 2)

Q = FunctionSpace(mesh, "CG", 1)

W = V + Q

# Define boundary conditions

# bcs = ...

# Define variational problem

(v, q) = TestFunctions(W)

(u, p) = TrialFunctions(W)

f = Constant(mesh, (0, 0, 0))

a = 2*mu*inner(grad(v), grad(u))*dx

- div(v)*p*dx + q*div(u)*dx

L = inner(v, f)*dx

# Compute solution

problem = VariationalProblem(a, L, bcs)

(u, p) = problem.solve().split()

# Plot solution

plot(u)

plot(p)

while ||E|| ≥ TOL :

compute primal solution

compute dual solution

compute cell-wise error
estimators

refine mesh where the
local error is high

[www.fenics.org]



We return to our aneurysm problem to see what
computational meshes our implementation suggests

p = 1 p = 0

u = 0

u = 0 u = 0

u = 0Sn

S
St

Initial mesh and boundary conditions



We return to our aneurysm problem to see what
computational meshes our implementation suggests

Flow velocity magnitude and shear stresses



We return to our aneurysm problem to see what
computational meshes our implementation suggests

The dual “velocity” field driven by the shear stress



When optimising for the shear component of the stress,
the mesh is dense near the aneurysm surface

After refining 5% of the cells with the highest local error-indicators 10 times
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The a posteriori error analysis can be extended to general
non-linear and time-dependent PDEs

• Approximate primal problem in weak form:

Find uh ∈ Vh : a(uh; v) = L(v) ∀ v ∈ V̂h

• M(u) is the goal functional we are interested in.

Recall, we want M(u) −M(uh) ≤ TOL

• The linearised dual problem in weak form:

Find z ∈ V̂ : ā′∗[u, uh](z, v) = M̄′[u, uh](v) ∀ v ∈ V − Vh

• As before, the error in the goal functional:

M(uh) −M(u) = r(z − Πhz) ≤ ||Dz|| ||h r̂||

[Verfürth, 1993, 1994 & 1991]



Applying the theory to the incompressible Navier-Stokes
equations provides insight on controlling the error

The strong form of the Navier-Stokes equations:

∂u

∂t
+
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ρ
− ν∇2u + (∇u)u = f ; ∇ · u = 0

A consistent splitting scheme (CSS) in weak form:
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[Guermond and Shen, 2003]



Applying the theory to the incompressible Navier-Stokes
equations provides insight on controlling the error

The linearised dual problem for Navier-Stokes: Find (w, r) ∈ V̂u × V̂p :
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which results in a dual problem in t = [T, 0].
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The primal equations describe the flow field

Flow velocity magnitude and direction



The dual equations describe the propagation of information

The dual “velocity” field driven by the shear stress on the top surface



Information from the primal and dual problems are used to
determine optimal computational meshes and time steps

Optimal mesh refinement at the initial time



In conclusion, error control schemes can be used to
accurately and efficiently compute quantities of interest

• We have the tools for a posteriori error control for general
Navier-Stokes solution schemes (and CSS in particular)

• Optimising for different goals results in significantly different
meshes

• For some kinds of flow, inexpensive Stokes calculations can
serve as predictors for useful meshes



In conclusion, error control schemes can be used to
accurately and efficiently compute quantities of interest

• We are continuing the error analysis to better adapt the mesh
and time step sizes

• The implementation is being extended to incorporate all
contributions to the error indicators, including jump terms

• We are also working on extensions to flow in realistic 3D
domains


