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Increasing collagen concentration with age

• Growth involves an addition or depletion of mass
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Uniaxial tensile response Response under cyclic load

• What causes the tissue to behave in this manner?

• Some recent modelling efforts based on mixture theory:
Ateshian (BMMB 2007), Lemon et al. (Math. Bio. 2006),
Loret and Simões (JMPS 2005)

• Modelling of solid-fluid coupling ⇒ Stiffness of tissue and
fluid transport ⇒ Nutrient transport ⇒ Tissue growth



The governing equations—Lagrangian perspective
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• Mass balance:
∂ρι

0
∂t = Πι − ∇X · M ι

• Momentum balance:
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The governing equations—Eulerian perspective
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σn Current quantities:
ρι – Species concentration

πι – Species production rate

mι – Species total flux

vι – Species velocity

g – Body force

qι – Interaction force

σι – Partial Cauchy stress

• Imposition of relevant boundary conditions best represented
and understood in the current configuration

• Mass balance:
∂ρι

∂t = πι − ∇x · mι

• Momentum balance:

ρι ∂vι

∂t = ρι (gι + qι) + ∇x · σι − (∇xvι) mι



Solving these equations in practice—A first pass

• Close the equations with constitutive relationships

◦ Solid: Hyperelastic material, P s = ρs
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• Sum species momentum balances to solve system-level
balance law

◦ Reduce number of partial differential equations by one
◦ Avoid specification of qι, because

∑
ι

(ρι
0q

ι + ΠιV ι) = 0

• System-level motion determined, utilise a constitutive
relationship to determine relative fluid flux

M f = Df
(
ρf
0F T g + F T ∇X · P f − ∇X(ef − θηf )

)
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1. Upper bound model from strain homogenisation:

Ω0

Ωt

F

Solid, ‘s’
Fluid, ‘f’

Pore structure deforms with the solid phase ⇒ Fluid-filled pore spaces see the overall deformation gradient

2. Lower bound model from stress homogenisation:

Ω0

Ωt

F

Solid, ‘s’
Fluid, ‘f’

Fluid pressure in the current configuration is the same as hydrostatic stress of the solid, pf = 1
3 tr[σs]



An operator-splitting solution scheme

• Nonlinear projection methods to treat incompressibility

• Backward Euler for time-dependent mass balance

• Mixed method for stress/strain gradient-driven fluxes

• Large advective terms stabilised using SUPG

• Coupled implementation; staggered scheme

At each time step, repeat:
◦ Fixing the concentration fields, solve the
mechanics problem for displacements, u

◦ Fixing the displacement field, solve the mass
transport problem for the concentration field, ρf

until both problems converge



A demonstrative numerical experiment

N · M f

N · M f

au au

• Simulating a tendon immersed in a bath

• Constrict it radially to force fluid flow

• Biphasic model

◦ Worm-like chain model for collagen
◦ Ideal, nearly incompressible fluid

• Mobility from Han et al. (JMR 2000)



Implications of the assumptions
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• Strength of coupling: C = δpf

1
3
δtr[σs]

• Upper bound: C ≈ O(κfδF :F −T
)

O(κsδF :F −T
)

= O(κf

κs ) � 1

• Lower bound: C = 1



A closer look at the convergence
Pass Strongly coupled Weakly coupled

Mechanics Residual CPU (s) Mechanics Residual CPU (s)

1 2.138 × 10−02 29.16 6.761 × 10−04 28.5

3.093 × 10−04 55.85 1.075 × 10−04 55.1

2.443 × 10−06 82.37 4.984 × 10−06 81.8

2.456 × 10−08 109.61 1.698 × 10−08 107.9

4.697 × 10−14 135.83 3.401 × 10−13 134.1

1.750 × 10−16 163.18 1.1523 × 10−17 161.1

2 5.308 × 10−06 166.79 5.971 × 10−08 192.5

4.038 × 10−10 193.36 4.285 × 10−11 218.6

1.440 × 10−14 220.45 2.673 × 10−15 246.1

4.221 × 10−17 247.04

3 5.186 × 10−06 250.62 2.194 × 10−09 277.3

3.852 × 10−10 277.44 2.196 × 10−13 304.2

1.369 × 10−14 304.16 1.096 × 10−17 331.6

4.120 × 10−17 331.47

4 5.065 × 10−06 335.16 8.160 × 10−11 363.2

3.674 × 10−10 362.24 7.923 × 10−15 390.2

1.300 × 10−14 388.79

4.021 × 10−17 416.08

5 4.948 × 10−06 419.59 3.078 × 10−12 421.4

3.503 × 10−10 446.24 3.042 × 10−16 448.6

1.236 × 10−14 473.20

3.924 × 10−17 500.85

6 4.832 × 10−06 504.65 1.179 × 10−13 479.9

3.340 × 10−10 531.28 1.291 × 10−17 507.0

1.174 × 10−14 558.17

3.829 × 10−17 585.27



Solving these equations in practice—Reprise

• Better bounds exist, e.g. Lopez-Pamies and Castañeda
(J. Elasticity 2005)

• What if we were to solve the “detailed” problem instead?

• Close the equations by specifying momentum transfer terms
arising from dissipation inequality

qf = −Df
(
vf − vs

)−∇x(ef − θηf )



Solving these equations in practice—Reprise

• Better bounds exist, e.g. Lopez-Pamies and Castañeda
(J. Elasticity 2005)

• What if we were to solve the “detailed” problem instead?

• Close the equations by specifying momentum transfer terms
arising from dissipation inequality

qf = −Df
(
vf − vs

)−∇x(ef − θηf )

• Solve equations in a current volume defined by solid skeleton
⇒ No notion of any deformation gradient besides F s

• Impose additional constraints such as intrinsic
incompressibility and saturation



Illustrative numerical experiments

Swelling of a balloon Constriction of the edges



Conclusions, ongoing and future work

• Pointed out that solving system-level balance laws require
judicious assumptions on the micromechanics

• Looked at some of the implications of assumptions on
solid-fluid interactions—physics and numerics

• Using the mixture theory to determine the origin of
rate-dependent response in engineered tendons

• Reinstated growth terms and associated kinematics—applying
the formulation to growth-dominated problems like cancer

• Careful examination of the influence of different forms of
momentum interaction terms

• For selected forms, determine the consequent degree of
coupling between equations, and thus, the convergence of
operator-splitting schemes



Conclusions, ongoing and future work

• Pointed out that solving system-level balance laws require
judicious assumptions on the micromechanics

• Looked at some of the implications of assumptions on
solid-fluid interactions—physics and numerics

• Using the mixture theory to determine the origin of
rate-dependent response in engineered tendons

• Reinstated growth terms and associated kinematics—applying
the formulation to growth-dominated problems like cancer

• Careful examination of the influence of different forms of
momentum interaction terms

• For selected forms, determine the consequent degree of
coupling between equations, and thus, the convergence of
operator-splitting schemes



Conclusions, ongoing and future work

• Pointed out that solving system-level balance laws require
judicious assumptions on the micromechanics

• Looked at some of the implications of assumptions on
solid-fluid interactions—physics and numerics

• Using the mixture theory to determine the origin of
rate-dependent response in engineered tendons

• Reinstated growth terms and associated kinematics—applying
the formulation to growth-dominated problems like cancer

• Careful examination of the influence of different forms of
momentum interaction terms

• For selected forms, determine the consequent degree of
coupling between equations, and thus, the convergence of
operator-splitting schemes


