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Some science history

• Newton’s “Principia” (1687); Maxwell’s “Theory” (1864)

• Newtonian gravity:

◦ Gravitational potential for a point mass m: Φ = −Gm
r

◦ Corresponding acceleration: g = −∇Φ = −Gm
r2 er

• Unable to explain:

◦ Bending of light due to stars
◦ Magnitude of the precession of the orbit of Mercury

• 5600 − 5557 = 43 seconds of arc per century

• Action at a distance
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Warming up with special relativity

• Maxwell’s equations ⇒ Speed of EM waves c � 3 × 108 m/s
. . . with respect to what?

• “The laws of physics are the same in all uniformly moving
reference frames”

• Interesting implications:

◦ Cosmic speed limit: 1 ≤ γ = 1√
1−v2/c2

< ∞
◦ Time dilation: ∆t′ = γ∆t
◦ Lorentz contraction: ∆x′ = ∆x

γ

◦ Mass-energy equivalence: E = Mc2 = γmc2

• Minkowski metric: ds2 = −dt2 + dx2 + dy2 + dz2

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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“Do not worry about your difficulties in mathematics, I assure you
that mine are greater.” — Einstein



A crash course on modern geometry and topology

• Spacetime: Curved, pseudo-Riemannian manifold with a
metric of signature (− + ++) ⇒ Charts and atlases allow us
to relate them to Euclidean spaces, R

n

• Tensor: Multi-index object which transforms according to

Â
i1...iq
j1...jp

= Xi1
k1

· · ·Xiq
kq

Y l1
j1
· · ·Y l1

jp
A

k1...kq

l1...lp

• Metric: Evolving, non-flat, symmetric, 2-index tensor, gµν

• Christoffel symbols: Γjks = 1
2

(
∂gjs

∂wk + ∂gks

∂wj − ∂gjk

∂ws

)

• Covariant derivative: Y i
;j = Y i

,j + Γjk
i Y k

• Riemann curvature tensor:
Rρ

σµν = ∂µΓρ
νσ − ∂νΓρ

µσ + Γρ
µλΓλ

νσ − Γρ
νλΓλ

µσ

• Ricci tensor: Rij = Rk
ikj

• Scalar curvature: R = Ri
i



A final prelude to general relativity

• What about action at a distance?

• What is so special about special relativity?
. . . Physics is the same for all observers in uniform motion

• Do you know if you are in inertial reference frame?

Impossible to tell! ⇒ Principle of equivalence
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A new basis for gravity

Gravity is the geometry of spacetime!



A look at the field equations

• System of second order, coupled, nonlinear PDEs:

Gµυ = 8πG
c4 Tµυ

G — Gravitational constant
c — Velocity of light

• Einstein Tensor: Gµυ = Rµυ − 1
2gµυR

Rµυ — Ricci tensor
R — Scalar curvature

• Stress energy tensor: Tµυ = (ρ + p)UµUυ + ρgµυ

Assuming a perfect fluid with 4-velocity Uµ, for e.g.

• Covariant divergence of G and T = 0 ⇒ Conservation laws



A famous analytical solution

• Working in a coordinate chart with (r, θ, φ, t)
• Spherically symmetric, static spacetime

• General form of such a metric:
ds2 = A (r) dr2 + r2dθ2 + r2 sin2 θdφ2 + B (r) dt2

• Vacuum field equations: Rab = 0 ⇒
4ȦB2 − 2rB̈AB + rȦḂB + rḂ2A = 0
rȦB + 2A2B − 2AB − rḂA = 0
−2rB̈AB + rȦḂB + rḂ2A − 4ḂAB = 0

Unique solution:

ds2 =
(
1 − 2Gm

c2r

)−1
dr2 + r2(dθ2 + sin2 θdφ2) − c2

(
1 − 2Gm

c2r

)
dt2

using the weak field approximation: g00 = −c2 + 2Gm
r



Some ado about numerics

• Formulations in weak form exist for “3 + 1” space×time
decomposition (for FEM)

(First we develop an elegant covariant theory and then turn it
back into a 3 + 1 form!)

• A typical numerical scheme

◦ Slice spacetime into spacelike 3D hyperspaces; Successive
slices are like “instants” of time

◦ Use the constraint equations and solve for the conditions on
the initial hypersurface

◦ Evolve these solutions forward
◦ Peridically check if constraints are propagated correctly

• FeTK: Open source finite element software libraries for solving
coupled PDEs on manifolds
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The usefulness of it all

• Better understanding of the physics of our universe

◦ Calculates precession of mercury’s orbit correctly!

• Simulations for gravitational wave detectors

◦ Recall this is a field theory, no action at a distance

• Physics of black holes

◦ Accretion disk evolution around black holes
◦ Jet formation near black holes

• Relativistic flows: Jets, Shocks

. . .
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