Viscoelastic and Growth Mechanics in Engineered and Native Tendons

S.C. Calve¹, H. Narayanan², K. Garikipati², K. Grosh^{2,3} and E.M. Arruda^{1,2}

¹Macromolecular Science and Engineering ²Mechanical Engineering ³Biomedical Engineering The University of Michigan

Motivation

- To characterize and develop mathematical models for the evolution of mechanical properties during the growth of collagen-based native tissues
- To engineer functional, implantable collagen-based tissue constructs in vitro, for studies of growth both in vitro and in vivo

(Collagen-Based) Soft Tissue Model: Tendon

Adult tendon

- •Relatively avascular
- •Relatively acellular
- •Non-innervated
- •80% of dry weight is type I collagen

Tissue Engineering: Tendon Cells Deposit a Physiologically Relevant Matrix In-Vitro

- Why in vitro models? Physiological relevance?
- Fisher F344 rat tendon cells are plated on natural mouse laminin coated substrates, in media supplemented with growth factors
- The cells form tendon cell arrays, secrete and organize a pericellular environment similar to that found in vivo within 48 hours of plating: versican and type VI collagen

Rat tendon cell arrays engineered in-vitro [Calve et al.]

nuclei

versican

type VI collagen

overlay

Canine tendon cell arrays in-vivo [Ritty et al., Structure, V11, p1179-1188, 2003]

A fibrillin-2 (red) [bar 80 mm], B versican (green), C and D fibrillin and versican [bar 120 mm in C and 80 mm in D]

Tendon Engineering by the Self-Organization of Cells and their Autogenous Matrix In-Vitro

- Cells continue to express proteins associated with the ECM in culture
- After approximately 2 weeks in culture the cells and ECM lift off the substrate and contract into a cylindrical construct
- Homogeneous, 12 mm long

Homogeneous Growth in Engineered Constructs

Both an increase in collagen content and cross-linking play a role

Growth of Rat Tibialis Anterior Tendon

Modelling Approach

- Growth: An addition of mass to the tissue
- Classical balance laws enhanced via fluxes and sources
- Multiple species inter-converting and interacting:
 - Solid: Collagen, proteoglycans, cells
 - Extra cellular fluid: Water (undergoes transport relative to the solid)
 - Dissolved solutes: Sugars, proteins, ... (undergo transport relative to fluid)

Mass Balance

 Π^{ι} – species production

$$M^{\iota}$$
 – species flux

Momentum Balance

$$\rho_0^{\iota} \frac{\partial}{\partial t} \left(\boldsymbol{V} + \boldsymbol{V}^{\iota} \right) = \rho_0^{\iota} \left(\boldsymbol{g} + \boldsymbol{q}^{\iota} \right) + \boldsymbol{\nabla}_X \cdot \boldsymbol{P}^{\iota} - (\boldsymbol{\nabla}_X (\boldsymbol{V} + \boldsymbol{V}^{\iota})) \boldsymbol{M}^{\iota}$$

Constitutive Framework

- Consistent with the dissipation inequality
- Constitutive hypothesis: $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$

► Collagen Stress:
$$\mathbf{P}^{c} = \rho_{0}^{c} \frac{\partial e^{c}}{\partial \mathbf{F}^{e^{c}}} \mathbf{F}^{e^{c}}$$

- Hyperelastic Material
- Continuum stored energy function based on the Worm-like chain model

► Fluid Stress:
$$\mathbf{P}^{f} = \rho_{0}^{f} \frac{\partial e^{f}}{\partial \mathbf{F}^{e^{f}}} \mathbf{F}^{g^{f-7}}$$

Ideal Fluid
 \(\rho_0^f \heta^f = \frac{1}{2}\kappa(det(\mathbf{F}^{e^f}) - 1)^2\), \(\kappa - fluid bulk modulus\)

► Fluid flux relative to collagen $\mathbf{M}^{f} = \mathbf{D}^{f} \left(\rho_{0}^{f} \mathbf{F}^{\mathrm{T}} \mathbf{g} + \mathbf{F}^{\mathrm{T}} \nabla_{X} \cdot \mathbf{P}^{f} - \nabla_{X} (e^{f} - \theta \eta^{f}) \right)$

Example: Growth in a Bath

- Biphasic model
 - worm-like chain model for collagen
 - ideal, nearly incompressible interstitial fluid with bulk compressibility of water
 - fluid mobility $D_{ij}^f = 1 imes 10^{-8} \delta_{ij}$, Han et al. [2000]
- "Artificial" sources: $\Pi^{f} = -k^{f}(\rho_{0}^{f} \rho_{0_{ini}}^{f}), \quad \Pi^{c} = -\Pi^{f}$
- Entropy of mixing: $\eta_{\text{mix}}^f = -\frac{k}{\mathcal{M}^f} \log \frac{\rho_0^f}{\rho_0}$

Example: Growth in a Bath

Native Tendon is Functionally Graded

Two week old TA tendon

Tendon Growth is Not Homogeneous

How could this be modelled?

Choices for Volumetric Sources

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities

$$\Pi^{c} = \left(\frac{\rho^{c}}{\rho^{c}_{0_{\text{ini}}}}\right)^{-m} \Psi_{0} - \Psi^{*}_{0}$$
[Harrigan & Hamilton, 1993]

• Enzyme Kinetics – Introducing additional species to the mixture

$$\Pi^{s} = \frac{(\Pi^{s}_{\max}\rho^{s})}{(\rho^{s}_{m} + \rho^{s})}\rho_{cell}, \quad \Pi^{c} = -\Pi^{s}$$
[Michaelis & Menten, 1913]

 Cell Signalling – Preferential growth in damaged regions

 $\mathbf{I^c} = \alpha \Pi^c$

Enzyme Kinetics $E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$ $k_1 \text{ - Association of substrate and enzyme}$ $k_{-1} \text{ - Dissociation of unaltered substrate}$ $k_2 \text{ - Formation of product}$ $\rho_m^{s} = \frac{(k_2 + k_{-1})}{k_1}$

Viscoelastic Response of TA Tendon

Five continuous cycles, 0.01/s, 20 s delay 10 Minute recovery, Sixth cycle at 0.01/s

Regional Variation Manifested in Viscoelastic Response of TA Tendon

Example: Viscoelasticity

- Tendon immersed in a bath; no growth.
- Strain rate = 0.01/s
- Terms in dissipation inequality result in loss
 - Scaled by mobilities, which are fixed from literature

Summary and future work

- Highlighted some recent experimental results pertinent to the mechanics of growing tendon
 - Heterogeneity and functional gradation
- Brief introduction to the formulation and modelling choices
- Open issues involving choices for modelling more complex behaviour
- Continue engineering and characterization of growing, functional biological tissue to drive and validate modelling
- Revisit fundamental kinematics assumptions to enhance the model

