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A continuum treatment of growth in biological tissue

Specific goals

• Describe and simulate the processes of growth and development

• Models that are physiologically appropriate and thermodynamically valid

• Experiments on in vitro tissue in parallel

– Descriptive model driven and validated by experiment
– Model drives the controlled experiments
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Development of biological tissue

Distinct, mathematically independent processes: [Taber - 1995]

• Growth/Resorption: Addition/Loss of mass
e.g. Densification of bones

• Remodelling: Change in microstructure
e.g. Alignment of trabeculae to the axis of external loading

• Morphogenesis: Change in macroscopic form
e.g. Development of an embryo from a fertilized egg



A continuum treatment of growth in biological tissue

The issues that arise

• Open system (with respect to mass)

• Interacting and interconverting species

• Species diffusing with respect to a solid phase (fluid, precursors, byproducts)

• Mixture physics

Our treatment involves the introduction of sources, sinks and fluxes of mass
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Biological model

Engineered tissue in vitro that is morphologically and functionally similar to
neonatal tissue [Calve et al. - 2003]
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Biological model - Morphological comparison

Morphological comparison of the engineered constructs to 2 day old neonatal rat
tendon [Calve et al. - 2003]
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Biological model - Mechanical comparison

Comparison of the stress-strain response of the engineered construct to embryonic
chicken tendon [Calve et al. - 2003]
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Tissue Engineering

• Capability to engineer constructs which model real tissue

• Carefully control environment and apply stimuli to control growth and
remodelling

– Mechanical loading in bioreactors
– Chemical evironment and nutrient supply
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Modelling Background

Some previous work:

• Cowin and Hegedus [1976]: Solid tissue; mass source; irreversible sources of
momentum and energy from perfusing fluid

• Epstein and Maugin [2000]: Mass flux; irreversible fluxes of momentum and
entropy

• Kuhl and Steinmann [2002]: Configurational forces motivate mass flux
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Mass Balance
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• Tissue formed by reactions involving precursors and byproducts – Sources and
sinks for species

• Transport of precursors, fluid and byproducts – Fluxes for species
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Mass Balance - Equations

For a species ι, in local form, in Ω0

∂ρι
0

∂t
= Πι − ∇X · M ι, ∀ ι = α, . . . , ω

The sources/sinks satisfy
ω∑

ι=α

Πι = 0.
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Mass Balance - Equations

For a species ι, in local form, in Ω0

∂ρι
0

∂t
= Πι − ∇X · M ι, ∀ ι = α, . . . , ω

For the solid phase
∂ρs

0

∂t
= Πs
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Mass Balance - Equations

For a species ι, in local form, in Ω0

∂ρι
0

∂t
= Πι−∇X · M ι, ∀ ι = α, . . . , ω

For the fluid phase
∂ρf

0

∂t
= −∇X · Mf
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Balance of Linear Momentum
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• Linear momentum balance coupled with mass transport. Sources/Sinks and
fluxes contribute to the momenta

• Material velocity relative to the solid V ι = (1/ρι
0)FM ι
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Balance of Linear Momentum - Equations

For a species ι, in local form, in Ω0

ρι
0

∂

∂t
(V + V ι) = ρι

0 (g + qι) + ∇X · Sι − (∇X (V + V ι)) M ι, ∀ ι = α, . . . , ω
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Balance of Linear Momentum - Equations

For a species ι, in local form, in Ω0
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Balance of Linear Momentum - Equations

For a species ι, in local form, in Ω0

ρι
0

∂

∂t
(V + V ι) = ρι

0 (g + qι) + ∇X · Sι− (∇X (V + V ι))M ι, ∀ ι = α, . . . , ω

Relation between Πι’s and qι’s,

ω∑

ι=α

(ρι
0q

ι + ΠιV ι) = 0
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Energy, Second Law

• Balance of energy for a species ι, in local form, in Ω0

ρι
0

∂eι

∂t
= Sι: Ḟ + Sι: ∇XV ι − ∇X · Qι + rι

0 + ρι
0ẽ

ι − ∇Xeι · (M ι)

• Proceeding to

– Write out the second law
– Multiplying it by θ and subtracting it from the energy equation
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Constitutive relations - I

Constitutive relations:

Sι = ρι
0

∂eι

∂F
, ∀ ι

θ =
∂eι

∂ηι
, ∀ ι

Qι = −Kι
∇Xθ, ∀ ι

u · Kιu ≥ 0 ∀u ∈ R
3
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Constitutive Relations - II

V ι = −D̃
ι
(

ρι
0

∂V

∂t
− ρι

0g − ∇X · Sι

)

−D̃
ι
(

ρι
0F

−T (∇Xeι − θ∇Xηι)
)

, ∀ ι

u · D̃
ι
u ≥ 0∀u ∈ R

3



A continuum treatment of growth in biological tissue

Reduced dissipation inequality

With the constitutive relations ensuring the non-positiveness of certain terms
the entropy inequality is reduced to

D =

ω∑

ι=α

(

ρι
0

∂eι

∂ρι
0

∂ρι
0

∂t
− Sι: ∇XV ι + ρι

0V
ι ·

(
∂V ι

∂t
+ (∇XV ι) F−1V ι

))

+

ω∑

ι=α

Πι

(

eι +
1

2
‖V + V ι‖2

)

+

ω∑

ι=α

(

ρι
0

∂

∂t
(V + V ι) − ρι

0g − ∇X · Sι + ∇X (V + V ι)
(
ρι
0F

−1V ι
)
)

· V ≤ 0
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Example

• Simplified 1D case involving two species, α, a solid and β, a fluid

• Solid is neo-hookean, fluid is compressible and ideal

• ρβ
0

and the stretch Λ vary, and calculated values are used to determine the flux
Mβ
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Results - Density variation along length
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Results - Variation in stretch along length
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Results - Observations

• Coupling of diffusion to stress

• The flux Mβ ( 4.5X10−4kg/m2/s) comes out to be positive, driving the fluid
against

– Gravity
– Concentration gradient

• Mechanics influences mass balance
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Conclusions and further work

• Physiologically consistent continuum formulation describing growth in an open
system

• Relevant driving forces arise from thermodynamics

• Consistent with mixture theory

• Applying present theory to 3D tissues involving multiple species diffusing and
reacting

• Formulated the remodelling problem – Preliminary results
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Mass Balance - Equations

For a species, in the integral form

d

dt

∫

Ω0

ρι
0(X, t)dV =

∫

Ω0

Πι(X, t)dV −

∫

∂Ω0

M ι(X, t) · NdA, ∀ ι = α, . . . , ω (1)

ρι
0 being the mass concentration of species ι and

ω∑

ι=α

ρι
0 = ρ0

The sources/sinks satisfy
ω∑

ι=α

Πι = 0. (2)
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Balance of Linear Momentum - Equations

For a species ι, in the integral form written in Ω0 is

d

dt

∫

Ω0

ρι
0(V + V ι)dV =

∫

Ω0

ρι
0gdV +

∫

Ω0

ρι
0q

ιdV +

∫

Ω0

Πι(V + V ι)dV

+

∫

∂Ω0

SιNdA −

∫

∂Ω0

(V + V ι)M ι · NdA (3)

qι =

ω∑

ϑ=α,ϑ6=ι

qιϑ (4)
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On application of balance of mass, in local form, for the entire system

ω∑

ι=α

ρι
0

∂

∂t
(V + V ι) =

ω∑

ι=α

ρι
0 (g + qι) +

ω∑

ι=α

∇X · Sι

−

ω∑

ι=α

(∇X (V + V ι))M ι (5)

Relation between Πι’s and qι’s,

ω∑

ι=α

(ρι
0q

ι + ΠιV ι) = 0 (6)
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Balance of Angular Momentum - Equations

• In a purely mechanical theory, balance of angular momentum implies σ = σT.

• For a single species ι, in integral form in Ω0,

d

dt

∫

Ω0

ϕ × ρι
0(V + V ι)dV =

∫

Ω0

ϕ × [ρι
0 (g + qι) + Πι (V + V ι)] dV

+

∫

∂Ω0

ϕ × (Sι − (V + V ι) ⊗ M ι)NdA(7)
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On simplification,

∫

Ω0

V × ρι
0V

ιdV = −

∫

Ω0

ε:









Sι − (V + V ι) ⊗ M ι

︸︷︷︸

ρι
0
F

−1
V

ι




F T




dV (8)

On localizing,

(
Sι − V ι ⊗ ρι

0F
−1V ι

)
F T = F

(
Sι − V ι ⊗ ρι

0F
−1V ι

)T

(9)

But, (V ι⊗F−1V ι)F T = V ι⊗V ι, which implies the symmetry: SιF T = F (Sι)T

This implies the partial Cauchy stresses are symmetric: σι = (σι)T
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Balance of Energy - Equations

d

dt

∫

Ω0

ρι
0

(

eι +
1

2
‖V + V ι‖2

)

dV =

∫

Ω0

(ρι
0g · (V + V ι) + rι

0) dV

+

∫

Ω0

ρι
0q

ι · (V + V ι)dV

+

∫

Ω0

(

Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

dV

+

∫

∂Ω0

(

(V + V ι) · Sι − M ι

(

eι +
1

2
‖V + V ι‖2

)

− Qι

)

· NdA. (10)
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On simplification localizing, and summing over all ι,

ω∑

ι=α

ρι
0

∂eι

∂t
=

ω∑

ι=α

(

Sι: Ḟ + Sι:∇XV ι − ∇X · Qι + rι
0 + ρι

0ẽ
ι
)

−

ω∑

ι=α

∇Xeι · (M ι) (11)

Where ẽι satisfies the relation,

ω∑

ι=α

(

ρι
0q

ι · (V + V ι) + Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

= 0 (12)
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The different terms - Mechanics

In the reference configuration Ω0,

Πι is the source/sink term for species ι
M ι is the mass flux term for species ι
Sι is the partial first Piola-Kirchhoff stress on species ι
N is the outward normal at the surface
g is the body force acting on the entire system
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The different terms - Mechanics

In the current configuration Ωt,

πι is the source/sink term for species ι
mι is the mass flux term for species ι
σι is the partial Cauchy stress on species ι
n is the outward normal at the surface
g is the body force acting on the entire system
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The different terms - Mechanics

V is the velocity of the solid phase
V ι is the material velocity relative to the solid phase defined as V ι = (1/ρι

0)FM ι

qι is the net force exerted on species ι by all other species in the system
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The different terms - Energy

eι is the internal energy of each species ι
F is the deformation gradient
Qι is the heat flux term for species ι
rι
0 is the heat supplied to species ι per unit reference volume

ẽ is the internal energy transferred to species ι from all other species


