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CHAPTER 1

Introduction

This dissertation presents a continuum treatment of growth in biological tissue

developed within the context of modern mixture theory. The crux of this work is

a careful examination of the assumptions underlying continuum thermodynamics

under the condition that multiple interacting species occupy a region of Euclidean

space simultaneously. The formal axiomatic treatment presented derives from these

assumptions, and provides insight into the sequence of interactions among tissue

mechanics, mass transport and biochemical reactions. A computational formulation

built upon the theory is used to solve a broad class of numerical examples demon-

strating several biophysical aspects of tissue growth.

This initial chapter provides some context for this work (Section 1.1) and an

overview of the topics considered in the remainder of the dissertation (Section 1.2).

1.1 Background

Growth involves the addition or depletion of mass in biological tissue. Growth

occurs in combination with remodelling, which is a change in microstructure, and

possibly with morphogenesis, which is a change in form in the embryonic state. The

physics of these processes are quite distinct, and for modelling purposes can, and

must, be separated. In this work, biological growth is formulated on a continuum

scale within the context of mixture theory (Truesdell and Toupin, 1960; Truesdell

1
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and Noll, 1965; Bedford and Drumheller, 1983), which allows us to systematically

account for the numerous interacting and inter-converting species constituting the

tissue. The crux of this work is a careful examination of the assumptions underlying

continuum thermodynamics for these mixtures, especially in the presence of supple-

mentary terms which enhance the balance laws from classical mechanics to allow for

the complex behaviour of tissues.

There have been a number of significant papers on biological growth (and remod-

elling), of which we touch upon some whose approaches are either similar to this

work in some respects, or differ in important ways.

In the context of biological growth, the notion of a mass source was first in-

troduced in Cowin and Hegedus (1976). Also recognising the importance of mass

transport to the growth problem, Epstein and Maugin (2000) introduced a mass flux

term to the corresponding transport equation. In their work, they also considered

irreversible momentum and entropy contributions from the species flux to account

for these aspects of the inter-species interactions, and deduce non-symmetric partial

Cauchy stresses, in contrast to the treatment here. (See Sections 2.1.3 and 4.1.3.)

Humphrey and Rajagopal (2002) provided a mathematical treatment of adapta-

tion in tissues, which includes growth and remodelling in the sense of this work. They

introduced the notion of evolving natural configurations to model the state of mate-

rial deposited at different instants in time. The treatment of the growth part of the

deformation gradient in this work (Section 2.2) bears some resemblance to this idea.

This concept also forms the basis for an active field of study within the literature

(Skalak, 1981; Skalak et al., 1996; Klisch et al., 2001; Taber and Humphrey, 2001;

Lubarda and Hoger, 2002; Ambrosi and Mollica, 2002) focusing on the kinematic

aspects of biological growth.
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Preziosi and Farina (2002) developed an extension to the classical Darcy’s Law to

incorporate mass exchanges between reacting species. This consideration is relevant

to growth problems; however, these issues were subsumed in Garikipati et al. (2004),

upon which this work is based.

While most of the computational examples in this dissertation are presented in the

context of modelling our primary tissues of interest, engineered tendon and ligament

constructs (Calve et al., 2004; Ma, 2007), many of the general ideas presented in this

work are applicable to modelling tumour growth. The ideas proposed are similar

to tumour modelling work that account for mechanical effects (Jackson and Byrne,

2002; Byrne et al., 2006).

The form of the Clausius-Duhem inequality arrived at in Section 4.2 is equiv-

alent to the forms in recent work on mixture theory-based models for biological

growth (Loret and Simões, 2005; Ateshian, 2007). However, subsequently varying

choices made in the different works, including this one, for the constitutive indepen-

dent variables result in altered constitutive specification. Moreover, the constitutive

choices detailed in this work ensure that the Clausius-Duhem inequality is satisfied

a priori, are adequately general to handle a fairly large class of physics, and most

significantly, have been implemented in a coupled formulation retaining much of their

rich detail, as evidenced by the computational examples presented in Chapter 5.

1.2 An overview

The core of this dissertation is divided into two parts.

The first part, consisting of Chapters 2 and 3, develops the theoretical formu-

lation for biological growth from a Lagrangian perspective and presents representa-

tive numerical examples demonstrating aspects of the coupled physics using a corre-
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sponding computational implementation. This approach, based on our previous work

(Garikipati et al., 2004), draws in some measure from Cowin and Hegedus (1976);

Epstein and Maugin (2000) and Taber and Humphrey (2001), and works in terms of

material quantities defined in the reference configuration of the tissue.

The theoretical treatment presented in Chapter 2 begins by deriving general bal-

ance equations governing the behaviour of multi-phase mixtures, and then proceeds

to specify constitutive relationships pertinent to growing biological tissue that are

thermodynamically-consistent, in the sense that specification of these relations does

not violate the Clausius-Duhem dissipation inequality. Two important contributions

of this work include a comprehensive account of the coupling between transport

and mechanics (stemming from the balance equations, kinematics and constitutive

relations), and an improvement to the mathematical treatment that allows for the

numerical stabilisation of the advection-diffusion mass transport equation in the

advection-dominated regime.

This approach was impaired by some basic deficiencies. Firstly, while the trans-

port equations were posed (consistently) in the reference configuration, for a tissue

undergoing finite strains, the physics of fluid-tissue interactions and the imposition

of relevant boundary conditions is best understood and represented in the current

configuration. Secondly, also stemming from its roots in solid mechanics, the for-

mulation relied upon primitive quantities that are not natural to fluids, such as the

deformation gradient of the fluid. While such quantities can be formally defined, they

are not easily tracked during the course of solving boundary value problems. One

final complication with this approach arose from attempting to impose the balance of

momentum for the tissue as a whole, as this necessitated additional assumptions on

the microstructural mechanics. Accurate modelling of the micromechanics requires
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sophisticated homogenisation techniques (e.g., Idiart and Castaneda (2003)) and

these assumptions have strong implications for the stiffness of tissue response, the

nature of fluid transport, and since nutrients are dissolved in the fluid, ultimately for

growth. This meant that without additional, complex, assumptions, the formulation

could not provide precise, quantitative results. (The calculations in Section 3.3.1,

however, do determine the upper and lower bounds of the solutions.)

It is these drawbacks in the Lagrangian formulation that motivate the work pre-

sented in the second half of this dissertation, composed of Chapters 4 and 5.

Chapter 4 is a reflection of our current understanding of the system that has

evolved over these past few years. Recognising that the tissue is composed of many

phases that undergo long-range transport, the formulation is rederived from an Eule-

rian perspective; the viewpoint used for formulating the basic laws of fluid mechanics.

In this approach, the balance equations are derived in the current configuration

of the tissue in terms of spatial variables enabling a straightforward application of

physically-relevant boundary conditions; but more importantly, the governing equa-

tions for the fluid phase are recast in terms of primitive variables that are more

natural to fluid mechanics: the fluid velocity and pressure. Another significant as-

pect of this work is that, upon revisiting the Clausius-Duhem inequality in terms

of spatial variables, appropriate constitutive choices are made to ensure that the

inequality is satisfied a priori.

Accompanying this revised formulation is an improved computational framework,

now designed to solve the detailed set of momentum balance equations, i.e., for each

species separately, eliminating the need for the micromechanics assumptions men-

tioned earlier. A brief discussion of this framework, along with selected computa-

tional examples, is the subject of Chapter 5. This coupled implementation demon-
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strates several basic aspects of the physics of biphasic non-reacting mixtures, has

been tailored to closely study aspects of the experimentally observed mechanics of

ligaments, and has been extended in a straightforward manner to a substantially

different class of problem: modelling tumour growth, as evidenced by the examples

in Chapter 5.

The computational framework thus furnishes a powerful tool that can possibly

be tailored to answer specific questions—ranging from those pertinent to viscoelas-

tic aspects of the mechanical response of growing tendons under different loading

conditions, to quantitative investigations of the efficacy of drugs based on how they

are administered, to understanding the cellular processes associated with tumour

growth.



CHAPTER 2

A Lagrangian perspective

Tracing its origins to mechanics theories for solid continua, the following formu-

lation for biological growth is developed naturally in terms of material quantities

defined in the reference configuration of the tissue. During the course of this chap-

ter, the fundamental field equations of a continuum idealisation of tissues are derived

from general principles governing the behaviour of multiphase mixtures. Specifically,

Section 2.1 helps define the system and formally introduces fundamental quanti-

ties characterising it, before deriving the balance laws from fundamental axioms.

Section 2.2 presents the kinematics associated with finite deformation growth. A

fundamental axiom of Thermodynamics, the entropy inequality, and the restrictions

it places on functional forms of constitutive relationships is the subject of Section 2.3.

The chapter concludes with key algorithmic considerations (Section 2.4) which play

an important role in the computational formulation underlying the numerical exper-

iments presented in Chapter 3.

2.1 Balance laws for an open mixture

The tissue of interest is idealised as an open subset of R
3 with a piecewise smooth

boundary. At a reference placement of the tissue, Ω0, points in the tissue are iden-

tified by their reference positions, X ∈ Ω0. The motion of the tissue is a sufficiently

smooth bijective map ϕ : Ω0 × [0, T ] → R
3, where Ω0 := Ω0 ∪ ∂Ω0; ∂Ω0 being

7
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X x

Πι πι

ϕ

Ω0

Ωt

N · M ι

n · mι

Figure 2.1: The tissue idealised as a continuous medium.

the boundary of Ω0. At a typical time instant t ∈ [0, T ], ϕ(X, t) maps a point X

to its current position, x. In its current configuration, the tissue occupies a region

Ωt = ϕt(Ω0). These details are depicted in Figure 2.1. The deformation gradient

F := ∂ϕ/∂X is the tangent map of ϕ.

The tissue consists of numerous species, of which the following groupings are of

importance for the models: A solid species, consisting of solid collagen fibrils and

cells,1 denoted by c, an extra-cellular fluid species, denoted by f, consisting primarily

of water, and solute species, consisting of precursors to reactions, byproducts, nutri-

ents, and other regulatory chemicals. A generic solute will be denoted by s. In the

treatment that follows, an arbitrary species will be denoted by ι, where ι = c, f, s.

The fundamental quantities of interest are mass concentrations, ρι0(X, t). These

are the masses of each species per unit system volume in Ω0. Formally, these quanti-

ties can also be thought of in terms of the maps ρι0 : Ω0× [0, T ] → R, upon which the

formulation imposes some smoothness requirements. By definition, the total mate-

1At this point, the solid species is not differentiated any further. This is a good approximation
to the physiological setting for tendons, which are relatively acellular and whose dry mass consists
of up to 75% collagen (Nordin et al., 2001). When modelling tumour growth in a later chapter
(Section 5.4), where cell mechanics and migration are significant (Namy et al., 2004), the solid
phase is further distinguished.
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rial density of the tissue at a point is a summation of these concentrations over all

species
∑
ι

ρι0 = ρ0.

The system is open with respect to mass. Other than the solid species, c, all

phases have mass fluxes, M ι.2 These are mass flow rates per unit cross-sectional

area in the reference configuration defined relative to the solid phase. The species

have mass sources (or sinks), Πι. The sources specify mass production rates per unit

volume of the body in its reference configuration, Ω0.

2.1.1 Balance of mass

As a result of mass transport (via the flux terms) and inter-conversion of species

(via the source/sink terms) introduced above, the concentrations, ρι0, change with

time. Written in integral form, the balance of mass for an arbitrary species over Ω0

states

(2.1)
d

dt

∫

Ω0

ρι0(X, t)dV

︸ ︷︷ ︸
Rate of change of mass

=

∫

Ω0

Πι(X, t)dV

︸ ︷︷ ︸
Mass being created

−

∫

∂Ω0

M ι(X, t) · NdA

︸ ︷︷ ︸
Mass leaving the domain

,

where N is the unit outward normal to the boundary, ∂Ω0.

Applying Gauss’ Divergence Theorem (Appendix A.1) to the surface integral

term, and localising the result (recalling that since Ω0 is a fixed volume, the time

derivative on the first term can be simply moved into the integral), we arrive at the

following local form of the balance of mass for an arbitrary species in the reference

configuration,

2As previously mentioned, when modelling certain physiological processes such as tumour growth
or wound healing, where migration of cells within the extra-cellular matrix is consequential, the
solid phase is further differentiated and cell migration is modelled as mass transport.
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(2.2)
∂ρι0
∂t

= Πι − DIV[M ι], ∀ ι.

Here, DIV[•] is the divergence operator in the reference configuration. The func-

tional forms of Πι are abstractions of the underlying biochemistry; physiologically

relevant examples of which are discussed in Section 2.3.7. The fluxes, M ι, are de-

termined from the thermodynamically-motivated constitutive relations described in

Section 2.3.4. Recall that, in particular, M c = 0.

The sources, Πι for various species, satisfy a relation
∑
ι

Πι = 0, which is derived

as follows. Firstly, summing Equation (2.1) over all species leads to the law of mass

balance for the system,

(2.3)
d

dt

∑

ι

∫

Ω0

ρι0dV =
∑

ι

∫

Ω0

ΠιdV −
∑

ι

∫

∂Ω0

M ι · NdA.

An alternate way of arriving at the mass balance equation for the system is to

envision an external observer accounting only for the fluxes at the boundary, not

aware of any processes internal to the system. Following this viewpoint, we neglect

the interconversion terms (sources/sinks) which exist within the system, and arrive

at,

(2.4)
d

dt

∑

ι

∫

Ω0

ρι0 dV = −
∑

ι

∫

∂Ω0

M ι · N dA.

Comparing the equivalent forms (2.3) and (2.4), it emerges (upon localisation) that

the sources and sinks satisfy

(2.5)
∑

ι

Πι = 0,
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a conclusion that is consistent with classical mixture theory (Truesdell and Noll,

1965) in the absence of a net production term for the system.

2.1.2 Balance of linear momentum

X x

ϕ

Ω0

Ωt

N · M ι

n · mι

g

qι

P ιN

σιn

Figure 2.2: Interaction forces, traction and body loads on the tissue.

In soft tissues, the species production rate and flux that appear on the right

hand-side in Equation (2.2) are strongly dependent on the local state of stress. To

correctly model this coupling, the balance of linear momentum should be solved to

determine the local state of strain and stress.

Recall that the deformation of the tissue is characterised by the map ϕ(X, t).

Since we are working under the assumption that the solid collagen fibrils and fibrob-

lasts do not undergo mass transport, the material velocity of this species, V = ∂ϕ/∂t,

is used as the primitive variable for mechanics. Each remaining species can undergo

mass transport relative to the solid collagen. For this purpose, it is useful to define

the material velocity of a species ι relative to the solid phase as: V ι = (1/ρι0)FM ι.

Thus, the total material velocity of a species ι is V + V ι.

The tissue is subjected to a surface traction, T , and a body force per unit mass, g.

We define the partial first Piola-Kirchhoff stress tensor corresponding to species ι as
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the portion of the total stress borne by the species. Denoting this quantity by P ι,

the natural boundary condition then implies that T =
∑

ι P
ιN on ∂Ω0. Thus, P ιN

is the corresponding partial traction, as depicted in Figure 2.2.

Recognising that the concentrations of solutes are low, and consequently that they

do not bear appreciable stress, the partial stresses and momentum balance equations

are defined only for the solid collagen and fluid phases. Written in integral form, the

balance of momentum of species ι over Ω0 is,

d

dt

∫

Ω0

ρι0(V + V ι)dV

︸ ︷︷ ︸
Rate of change of momentum

=

∫

Ω0

ρι0gdV +

∫

Ω0

ρι0q
ιdV

︸ ︷︷ ︸
Resultant body force

+

∫

Ω0

Πι(V + V ι)dV

︸ ︷︷ ︸
Momentum being created

+

∫

∂Ω0

P ιNdA

︸ ︷︷ ︸
Boundary traction

−

∫

∂Ω0

(V + V ι)M ι · NdA

︸ ︷︷ ︸
Momentum leaving the domain

,(2.6)

where qι is the force per unit mass exerted upon ι by the other species present. Note

the contributions of the mass source distributed through the volume and the influx

over the boundary to the rate of change of momentum in Equation (2.6).

Writing (V + V ι)M ι · N as ((V + V ι) ⊗ M ι)N , and using Gauss’ Divergence

Theorem (Appendix A.1), one obtains:

∫

Ω0

(
∂ρι0
∂t

(V + V ι) + ρι0
∂

∂t
(V + V ι)

)
dV =

∫

Ω0

ρι0 (g + qι) dV

+

∫

Ω0

(Πι (V + V ι) + DIV[P ι]) dV

−

∫

Ω0

DIV [(V + V ι] ⊗ M ι) dV.

Applying the product rule to the last term and using the mass balance equation (2.2)

gives
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∫

Ω0

ρι0
∂

∂t
(V + V ι) dV =

∫

Ω0

ρι0 (g + qι) dV

+

∫

Ω0

(DIV [P ι] − (GRAD [V + V ι]) M ι) dV,

where GRAD[•] is the gradient operator in the reference configuration. Localising

this result gives the balance of linear momentum for a single species in Ω0:

ρι0
∂

∂t
(V + V ι) = ρι0 (g + qι) + DIV[P ι]

− (GRAD [V + V ι]) M ι, ι = c, f.

(2.7)

The final term with the gradient of total species velocity identifies the contribution

of the flux to the balance of momentum. In practise, when the relative magnitude

of the fluid mobility (and hence flux) is small, the final term on the right hand-side

of Equation (2.7) is negligible, resulting in a more classical form of the balance of

momentum. Furthermore, in the absence of significant acceleration of the tissue

during growth, the left hand-side can also be neglected, reducing (2.7) to the quasi-

static balance of linear momentum.

The interaction forces, qι, satisfy a relation with the mass sources, Πι, that

is elucidated by the following argument. One way of arriving at the balance of

momentum of the entire tissue is by summing Equation (2.6) over ι = c, f

∑

ι

d

dt

∫

Ω0

ρι0(V + V ι)dV =
∑

ι

∫

Ω0

ρι0gdV +
∑

ι

∫

Ω0

ρι0q
ιdV

+
∑

ι

∫

Ω0

Πι(V + V ι)dV +
∑

ι

∫

∂Ω0

P ιNdA

−
∑

ι

∫

∂Ω0

(V + V ι)M ι · NdA.(2.8)
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As in Section 2.1.1, recall that for an external observer, the rate of change of

momentum of the entire system is affected only by external agents, and is indepen-

dent of internal interactions of any nature (qι and Πι). This observation leads to

the following equivalent expression for the rate of change of linear momentum of the

system:

∑

ι

d

dt

∫

Ω0

ρι0(V + V ι)dV =

∫

Ω0

ρ0gdV +

∫

∂Ω0

PNdA

−
∑

ι

∫

∂Ω0

(V + V ι)M ι · NdA.(2.9)

Here, P =
∑
ι

P ι and ρ0 =
∑
ι

ρι0. Since both (2.8) and (2.9) represent the balance

of linear momentum of the system, it follows upon inspection that:

∑

ι

∫

Ω0

ρι0q
ιdV +

∑

ι

∫

Ω0

Πι (V + V ι) dV = 0,

which, upon localisation (recalling Equation (2.5)), leads to

∑

ι

(ρι0q
ι + ΠιV ι) = 0,(2.10)

a result that is also consistent with classical mixture theory (Truesdell and Noll,

1965).

2.1.3 Balance of angular momentum

The balance of angular momentum in a purely mechanical theory implies that

the Cauchy stress is symmetric: σ = σT. This result is now examined in context of

an open system comprising of multiple interacting and inter-converting species.
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The balance of angular momentum about the origin of a species ι over Ω0, as

observed from an inertial reference frame, requires,

d

dt

∫

Ω0

ϕ × ρι0(V + V ι)dV

︸ ︷︷ ︸
Rate of change of angular momentum

=

∫

Ω0

ϕ × [ρι0 (g + qι) + Πι (V + V ι)] dV

︸ ︷︷ ︸
Moment from body forces and angular momentum being created

+

∫

∂Ω0

ϕ × (P ι − (V + V ι) ⊗ M ι) NdA

︸ ︷︷ ︸
Moment from traction and angular momentum leaving the domain

(2.11)

Applying properties of the cross product, the product rule and Gauss’ Divergence

Theorem (Appendix A.1) gives

∫

Ω0

V × ρι0V
ι + ϕ ×

(
∂ρι0
∂t

(V + V ι) + ρι0
∂

∂t
(V + V ι)

)
dV =

∫

Ω0

ϕ × ρι0 (g + qι + Πι (V + V ι)) dV

+

∫

Ω0

(ϕ × DIV[P ι] − ϕ × (GRAD [V + V ι] M ι)) dV

∫

Ω0

(−ϕ × (V + V ι) DIV [M ι]) dV

−

∫

Ω0

ǫ :
(
(P ι − (V + V ι) ⊗ M ι) F T

)
dV,

where ǫ is the permutation symbol, and ǫ : A is written as ǫijkAjkei in indicial form

for any second-order tensor A; ei being the ith basis vector. Using the mass balance

equation (2.2), and balance of linear momentum (2.7), we have

∫

Ω0

V × ρι0V
ιdV = −

∫

Ω0

ǫ :





P ι − (V + V ι) ⊗ M ι

︸︷︷︸
ρι
0F

−1
V

ι


F T


 dV.
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Recalling the relation of the permutation symbol to the cross product, and the indi-

cated relation between M ι and V ι leads to

0 = −

∫

Ω0

ǫ :
((

P ι − V ι ⊗ ρι0F
−1V ι

)
F T
)
dV.

Localising this result and again applying the properties of the permutation symbol

leads to the symmetry condition,

(2.12)
(
P ι − V ι ⊗ ρι0F

−1V ι
)
F T = F

(
P ι − V ι ⊗ ρι0F

−1V ι
)T
.

But, (V ι ⊗ F−1V ι)F T = V ι ⊗ V ι, and thus, the symmetry P ιF T = F (P ι)T

that results from conservation of angular momentum for a purely mechanical theory

is retained in this case of a mixture. The partial Cauchy stresses are therefore

symmetric: σι = σιT , and this is also seen directly in terms of spatial quantities in

Section 4.1.3.

Disparate results on the symmetry of stress stem primarily from the exact defini-

tions of the fundamental quantities involved in the analysis. This is especially true

of how the total stress in the system is distributed as partial stresses borne by the

species comprising the system. For e.g., Epstein and Maugin (2000) incorporate an

“irreversible” contribution from their species flux into their local measure of partial

Cauchy stress. This results in their deduction of a non-symmetric partial Cauchy

stress, in contrast to the result shown above.

2.1.4 Balance of energy

Since the masses of the various species constituting the system are allowed to

change as a result of mass transport and interconversion, it is appropriate to work



17

X

rι

Ω0
PN

ẽι

N · Q

Figure 2.3: Energetic interactions the tissue is subject to.

with energy and energy-like quantities per unit mass. In addition to the terms

introduced previously, the internal energy per unit mass of species ι is denoted eι,

the heat supply to species ι per unit mass of that species is rι, and the partial heat

flux vector of ι is Qι, defined on Ω0. An interaction energy, ẽι, appears between

species and accounts for the energy transferred to ι by all other species, per unit

mass of ι. These quantities are shown in Figure 2.3.

Working in Ω0, the rate of change of internal and kinetic energies of species ι is

related to the work done on it by mechanical loads, processes of mass production

and transport, heating and energy transfer as:
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d

dt

∫

Ω0

ρι0

(
eι +

1

2
‖V + V ι‖2

)
dV

︸ ︷︷ ︸
Rate of change of energy

=

∫

Ω0

(ρι0g · (V + V ι) + ρι0r
ι) dV

︸ ︷︷ ︸
Work done by body forces and heat supplied

+

∫

Ω0

ρι0q
ι · (V + V ι)dV

︸ ︷︷ ︸
Work done by interaction forces

+

∫

Ω0

(
Πι

(
eι +

1

2
‖V + V ι‖2

)
+ ρι0ẽ

ι

)
dV

︸ ︷︷ ︸
Energy from species creation and interaction

+

∫

∂Ω0

(
(V + V ι) · P ι − M ι

(
eι +

1

2
‖V + V ι‖2

)
− Qι

)
· NdA

︸ ︷︷ ︸
Work done by applied traction and energy leaving the domain as mass and heat flux

.(2.13)

The above equation for the rate of change of energy of a single species can be

further simplified by applying the product rule and Gauss’ Divergence Theorem

(Appendix A.1), giving first,

∫

Ω0

(
∂ρι0
∂t

(
eι +

1

2
‖V + V ι‖2

)
+ ρι0

∂

∂t

(
eι +

1

2
‖V + V ι‖2

))
dV =

∫

Ω0

(
ρι0g · (V + V ι) + ρι0r

ι + Πι

(
eι +

1

2
‖V + V ι‖2

)
+ ρι0ẽ

ι

)
dV

+

∫

Ω0

ρι0q
ι · (V + V ι)dV

+

∫

Ω0

((V + V ι) · DIV [P ι] + P ι : GRAD [V + V ι]) dV

−

∫

Ω0

(
DIV [M ι]

(
eι +

1

2
‖V + V ι‖2

))
dV

−

∫

Ω0

((GRAD [eι] + (V + V ι) · GRAD [V + V ι]) · (M ι) − DIV [Qι]) dV.

Applying the balance of mass (2.2) and the balance of momentum (2.7) to the equa-

tion above and localising the result, we have,
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ρι0
∂eι

∂t
= P ι : GRAD [V + V ι] − DIV [Qι] + ρι0r

ι + ρι0ẽ
ι

−GRAD [eι] · M ι, ∀ ι.(2.14)

a final form of the balance of energy of a species ι which is most convenient for

combining with the entropy inequality, leading to the Clausius-Duhem form of the

dissipation inequality (Section 2.3).

Analogous to the results obtained in Sections 2.1.1 and 2.1.2, the inter-species

energy transfers, ẽι, are related to interaction forces, qι, and mass sources, Πι. To

arrive at this relation, we first obtain the balance of mass of the entire system by

summing Equation (2.13) over all species:

∑

ι

d

dt

∫

Ω0

ρι0

(
eι +

1

2
‖V + V ι‖2

)
dV =

∑

ι

∫

Ω0

(ρι0g · (V + V ι) + ρι0r
ι) dV

+
∑

ι

∫

Ω0

ρι0q
ι · (V + V ι)dV

+
∑

ι

∫

Ω0

(
Πι

(
eι +

1

2
‖V + V ι‖2

)
+ ρι0ẽ

ι

)
dV(2.15)

+
∑

ι

∫

∂Ω0

(
(V + V ι) · P ι − M ι

(
eι +

1

2
‖V + V ι‖2

)
− Qι

)
· NdA.

Then, expressing the rate of change of energy of the system interacting with its

environment from the point of view of an external observer unaware of internal in-

teractions between species (interaction forces, mass interconversion and inter-species

energy transfers), we have,
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∑

ι

d

dt

∫

Ω0

ρι0

(
eι +

1

2
‖V + V ι‖2

)
dV =

∑

ι

∫

Ω0

(ρι0g · (V + V ι) + ρι0r
ι) dV

+
∑

ι

∫

∂Ω0

(
(V + V ι) · P ι − M ι

(
eι +

1

2
‖V + V ι‖2

)
− Qι

)
· NdA.

Since the equation above and (2.15) are equivalent statements of the balance of

energy, it follows upon inspection and localisation that,

∑

ι

(
ρι0q

ι · (V + V ι) + Πι

(
eι +

1

2
‖V + V ι‖2

)
+ ρι0ẽ

ι

)
= 0.(2.16)

This result, relating the interaction energies to interaction forces between species,

their sources and relative velocities, is identical to that obtained from classical mix-

ture theory (Truesdell and Noll, 1965), ensuring consistency of the present formula-

tion with mixture theory.

2.2 The kinematics of growth

Local volumetric changes are associated with changes in the concentrations of

solid collagen and fluid, ι = c, f, and one important aspect of the coupling between

mass transport and mechanics stems from this phenomenon.3 If the material of the

solid collagen or fluid remains stress free, it swells with an increase in concentra-

tion (mass of the species per unit system volume), and shrinks as its concentration

decreases. This leads to the notion of the growth component of the deformation gra-

dient. This observation has led to an active field of study within the literature on

biological growth (Skalak, 1981; Skalak et al., 1996; Klisch et al., 2001; Taber and

3Another important facet of this coupling arises from the thermodynamically-motivated consti-
tutive relationship for species fluxes, as detailed in Section 2.3.4
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Figure 2.4: The kinematics of growth.

Humphrey, 2001; Lubarda and Hoger, 2002; Ambrosi and Mollica, 2002), and the

treatment below follows in the same vein.

In the setting of finite strain kinematics, the total deformation gradient, F , is

decomposed into the growth component of the solid collagen, F gc

, a geometrically-

necessitated elastic component accompanying growth, F̃
ec

and an additional elastic

component due to external stress, F
ec

. Later, we will write F ec = F
ec

F̃
ec

. This

elastic-growth decomposition is visualised in Figure 2.4 and is elaborated upon below.

This split of the total deformation gradient is analogous to the classical decompo-

sition of multiplicative plasticity (Bilby and Smith, 1956; Lee, 1969). As explained

in Section 2.4.1, we assume that the fluid-filled pores also deform with F , and that

a component, F ef , of this total deformation gradient tensor, determines the fluid

stress. We also assume a fluid growth component, F gf

, which is detailed below, and

that F efF gf

= F . As with the solid collagen we admit F ef = F
ef

F̃
ef

, the sub-
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components carrying the same interpretation as for the solid collagen. However, this

last decomposition is not explicitly used.

Assuming that the volume changes associated with growth described above are

isotropic, a simple form for the growth part of the deformation gradient tensor is

(2.17) F gι

=

(
ρι0
ρι0ini

) 1
3

1, ι = c, f

where ρι0ini
(X) is the reference concentration at the initial time, and 1 is the second-

order isotropic tensor.4 In the state F = F gι

, the species would be stress free. The

kinematics being local, the action of F gι

alone can result in incompatibility, which is

eliminated by the geometrically-necessary elastic deformation F̃
eι

, which causes an

internal, self-equilibrated stress. The component F
eι

is associated with a separate

elastic deformation due to an external stress.

2.2.1 Saturation and tissue swelling

The degree of saturation of the solid phase plays a fundamental role in determining

whether the tissue responds to an infusion (expulsion) of fluid by swelling (shrink-

ing). In particular, the isotropic swelling law defined by Equation (2.17) has to be

generalised to treat the case in which the solid phase is not saturated by fluid.

Figure 2.5 schematically depicts two possible scenarios. If the tissue is unsatu-

rated in its current configuration, as in A, then, on a microscopic scale, it contains

unfilled voids. It is thus capable of allowing an influx of fluid, which tends to increase

its degree of saturation until fully saturated, as in B. This increase does not cause

swelling of the tissue in the local stress-free state, as there is free volume for incoming

4This choice is only the simplest possible. Given the highly directional micro-structure and
mechanical properties of many tissues, it seems likely that anisotropic growth is actually more
common, as suggested by the thermodynamic arguments presented in Section 4.2.5.
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A B

B

CUnsaturated

Saturated

Figure 2.5: Stages of tissue saturation.

Unsaturated tissue in the current configuration (A) allows influx of fluid without swelling
until it is completely saturated (B). Initially saturated tissue (B), in general, swells with
influx of fluid (C).

fluid to occupy. However, once the tissue is saturated in the current configuration,

an increase in the fluid content causes swelling in the stress-free state, as depicted

in C, since there is no free volume for the entering fluid to occupy. It is this second

case that is modelled by (2.17).

It is worth emphasising that this argument holds for F gf

, which is the local

stress-free state of deformation of the fluid-containing pores at a point. The actual

deformation gradient, F = F efF gf

, also depends on the elastic part, F ef , which

is determined by the constitutive response of the fluid. Under stress, an incom-

pressible fluid will have det(F ef ) = 1, where det(•) denotes the determinant of
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a second-order tensor. Therefore, a fluid-saturated tissue will swell with fluid in-

flux, det(F ) = det(F gf

) > 1. A compressible fluid may have det(F ef ) < 1 allowing

det(F ) < 1 even with det(F gf

) > 1. But, even in this case, in the stress-free state

there will be swelling.

Thus, for the fluid phase, the isotropic swelling law can be extended to the un-

saturated case by introducing a degree of saturation, ṽι, defined in the current con-

figuration, Ωt, because it is in this configuration that it is physically relevant to

discuss system saturation. We have ṽι = ρι/ρ̃ι, where ρ̃ι is the intrinsic density in

Ωt and is given by ρ̃ι = ρ̃ι0/det(F ). Note that the intrinsic reference density, ρ̃ι0, is

a material property. Upon solution of the mass balance equation (2.40) for ρι, the

species volume fractions, ṽι, can be computed in a straightforward fashion. The sum

of these volume fractions is our required measure of saturation defined in Ωt. We also

recognise that for the dilute solutions obtained with physiologically-relevant solute

concentrations, the saturation condition is very well approximated by ṽf +ṽc = 1. So,

we proceed to redefine the fluid growth-induced component of the pore deformation

gradient tensor as follows:

(2.18) F gf

=





(
ρf0
ρf0sat

) 1
3

1, ṽf + ṽc = 1

1, otherwise.

In Equation (2.18), ρf
0sat

is the reference concentration value at which the tissue

attains saturation in the current configuration.

With this redefinition of F gf

, it is implicit that ṽf + ṽc > 1 is non-physical.

Saturation holds in the sense that ṽf + ṽc = 1. It has been common in soft tissue

literature to assume that, under normal physiological conditions, soft tissues are

fully saturated by the fluid and Equation (2.17) is appropriate for ι = f. However,
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this treatment of saturation and swelling induced by the fluid phase is necessary

background for Section 2.3.3, where we examine the response of the fluid phase

under tension. This approach also holds relevance for partial drying, which ex vivo

or in vitro tissue may be subject to under certain laboratory conditions. It also

significantly expands the relevance of the formulation by making it applicable to the

mechanics of drained porous media other than biological tissue; most prominently,

soils.

2.3 The entropy inequality and its restrictions on constitutive relations

The treatment presented in this section builds upon certain fundamental assump-

tions underlying the system under consideration. Firstly, the Second Law of thermo-

dynamics (or the entropy production inequality) is assumed to hold at a continuum

point for all species as a whole, but, in general, not for each individual species.

Differing views on the spatial scale at which a continuum point is defined lead to

varying interpretations of the Second Law. The spatial scale of our continuum point

is chosen such that the following arguments are valid. Another assumption that is

tied to this spatial scale, and consequently to the degree of observed homogeneity

between mixed species, is that all species occupying a continuum point in the tissue

have the same absolute temperature, θ.

With these assumptions, and denoting by ηι the entropy per unit mass of species ι,

the entropy inequality, when written out for the entire system in the reference con-

figuration from the viewpoint of an external observer, reads:
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∑

ι

d

dt

∫

Ω0

ρι0η
ιdV

︸ ︷︷ ︸
Rate of change of entropy

≥
∑

ι

∫

Ω0

ρι0r
ι

θ
dV

︸ ︷︷ ︸
Entropy added through heat supply

−
∑

ι

∫

∂Ω0

(
M ι · Nηι +

Qι

θ
· N

)
dA

︸ ︷︷ ︸
Entropy lost through mass and heat flux

.(2.19)

Applying Gauss’ Divergence Theorem (Appendix A.1), using the mass balance equa-

tion (2.2), and localising the result, we have the following form of the entropy in-

equality,

∑

ι

(
ρι0
∂ηι

∂t
+ Πιηι

)
≥
∑

ι

(
ρι0r

ι

θ
− GRAD [ηι] · M ι

)

−
∑

ι

(
DIV [Qι]

θ
−

GRAD [θ] · Qι

θ2

)
.(2.20)

Now, multiplying Equation (2.20) by the temperature field, θ, subtracting it from

the balance of energy (2.14) and using the balance of momentum (2.7) for ρι0q
ι gives,

∑

ι

ρι0

(
∂eι

∂t
− θ

∂ηι

∂t

)
+
∑

ι

(
Πι

(
ψι +

1

2
‖V + V ι‖2

)
+

GRAD [θ] · Qι

θ

)

+
∑

ι

(
ρι0
∂

∂t
(V + V ι) − ρι0g − DIV [P ι] + GRAD [V + V ι] M ι

)
· (V + V ι)

−
∑

ι

(
P ι : Ḟ − P ι : GRAD [V ι] + (GRAD [eι] − θ GRAD [ηι]) · M ι

)
≤ 0,(2.21)

the Clausius-Duhem (or reduced dissipation) inequality for the growth process. Here,

ψι = eι − θηι is the mass-specific Helmholtz free energy of species ι.

2.3.1 Thermodynamically-consistent constitutive framework

As is customary in field theories of continuum physics, the Clausius-Duhem in-

equality (2.21) derived above is used to obtain restrictions on constitutive relation-
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ships governing the behaviour of the system.

We assume the following functional form of the internal energy per unit mass of

species ι:5 eι = êι(F eι

, ηι, ρι0) and substitute this into the Clausius-Duhem inequality.

Upon applying the chain rule of differentiation and regrouping some terms, (2.21)

becomes,

∑

ι

(
ρι0

∂eι

∂F eι − P ιF gιT

)
: Ḟ

eι

+
∑

ι

ρι0

(
∂eι

∂ηι
− θ

)
∂ηι

∂t

+
∑

ι

(
ρι0
∂

∂t
(V + V ι) − ρι0g − DIV [P ι] + GRAD [V + V ι] M ι

)
· (V ι + V )

+
∑

ι

(
ρι0F

−T (GRAD [eι] − θ GRAD [ηι])
)
· V ι

+
∑

ι

Πι

(
ψι +

1

2
‖V + V ι‖2

)
+
∑

ι

GRAD [θ] · Qι

θ

+
∑

ι

ρι0
∂eι

∂ρι0

∂ρι0
∂t

−
∑

ι

P ι : (GRAD [V ι] + F eι

Ḟ
gι

) ≤ 0,(2.22)

which represents a fundamental restriction upon the physical processes underlying

biological growth. Any constitutive relationships that are prescribed must satisfy

this restriction, as is well-known (Truesdell and Toupin, 1960). And so, making

selections that ensure some terms on the left hand-side of (2.22) vanish (ensuring

that they satisfy the relationship a priori), we prescribe the following constitutive

relations which close the system of differential equations governing our tissue:

(2.23) P ιF gιT

= ρι0
∂eι

∂F eι ,

5This initial choice is one of the simplest possible (incorporating one field variable from each of
the different kinds of physics considered: Mechanics, heat transfer and mass transport) and results
in a restricted class of constitutive relationships. As seen in Section 4.2, mass-specific Helmholtz
free energies of species dependent upon other variables, such as internal variables arising from
mechanics, lead to a more general class of constitutive relationships, such as viscoelastic materials
(Section 4.2.4).
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which specifies that the constitutive relation for P ιF gιT

has the form of a hyperelastic

material (Details regarding the specific hyperelastic model used for the computations

in Chapter 3 have been discussed in the following section.),

(2.24) θ =
∂eι

∂ηι
,

which implies that the absolute temperature, following the definition normally em-

ployed in thermal physics, is uniform across all species,

ρι0V
ι = −

D̃
ι

ρι0
(ρι0g − DIV [P ι] + GRAD [V ] M ι)

−
D̃

ι

ρι0

(
ρι0F

−T (GRAD [eι] − θ GRAD [ηι])
)
,

(2.25)

which provides a constitutive relationship for the species fluxes6 in terms of a product

of a positive semi-definite mobility tensor, D̃
ι
, and a summation of different driving

forces (which is discussed in greater detail at a later section (2.3.4)), and finally,

(2.26) Qι = −Kι GRAD [θ] ,

which states that the heat flux in species ι is given by the product of a positive

semi-definite conductivity tensor, Kι, and the negative of the temperature gradient

field. This relationship is identical to the Fourier Law of heat conduction.

With these constitutive relations (2.23–2.26) ensuring that certain terms of the

dissipation inequality vanish, (2.22) is further reduced to

6A careful comparison of this relation (2.25) with the motivating term in the Clausius-Duhem
inequality (2.22) will reveal that a driving force from the acceleration of the solid phase does not
appear in the constitutive relationship for the species flux. Appendix B.1 discusses this absence in
greater detail.
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∑

ι

(
ρι0
∂eι

∂ρι0

∂ρι0
∂t

− P ι : (GRAD [V ι] + F eι

Ḟ
gι

)

)

+
∑

ι

(
ρι0V

ι ·

(
∂

∂t
(V + V ι) + (GRAD [V ι]) F−1V ι

)
+ Πι

(
ψι +

1

2
‖V + V ι‖2

))

+
∑

ι

(
ρι0
∂

∂t
(V + V ι) − ρι0g − DIV [P ι] + GRAD [V + V ι] M ι

)
· V ≤ 0.

(2.27)

The left hand-side of (2.27) is the dissipation, D, a quantity whose non-positiveness

has to be numerically verified when performing computations to ensure that addi-

tional constitutive choices (such as those for the source terms, Πι, are thermodynam-

ically valid).

When the dissipation inequality is revisited while deriving the growth formulation

from an Eulerian perspective in a later chapter (Section 4.2), additional constitutive

relations will be introduced which ensure that all terms in the dissipation, D, are

satisfied a priori. But now, we will take a detailed look at the specific forms of the

constitutive relations used in the computations presented in Chapter 3. In particular,

Section 2.3.2 discusses the strain energy density function for collagen derived from

an anisotropic network model based on entropic elasticity, Section 2.3.3 describes

the pressure response of an ideal, nearly-incompressible fluid, Section 2.3.4 details

the constitutive relationship for the fluid flux, Section 2.3.6, in a similar manner,

discusses solute transport, and finally, Section 2.3.7 provides some examples and

physiological motivation for different kinds of collagen sources.

2.3.2 An anisotropic network model

From Equation (2.23), the partial first Piola-Kirchhoff stress of collagen, modelled

as a hyperelastic material, is P c = ρc
0
∂ec

∂F
ec F

gc−T

. Recall from Section 2.2 that
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F ec = FF gc−1

is the elastic part, and F gc

is the growth part, respectively, of the

deformation gradient of collagen. Along the lines of Equation (2.17), if we were

considering unidirectional growth of collagen along a unit vector e, we would have

F gc

=
ρc0
ρc0ini

e ⊗ e, with ρc
0ini

denoting the initial concentration of collagen at the point.

The mechanical response of tendons in tension is determined primarily by their

dominant structural component: highly oriented fibrils of collagen. In this formu-

lation, the strain energy density for collagen has been obtained from hierarchical

multi-scale considerations based upon an entropic elasticity-based worm-like chain

(WLC) model (Kratky and Porod, 1949). The WLC model has been widely used

for long chain single molecules, most prominently for DNA (Marko and Siggia, 1995;

Rief et al., 1997; Bustamante et al., 2003), and for the collagen monomer (Sun et al.,

2002). The central parameters of this model are the chain’s contour length, L, and

persistence length, A. The latter is a measure of its stiffness and given by A = χ/kθ,

where χ is the bending rigidity, k is Boltzmann’s constant and θ is the temperature.

See Landau and Lifshitz (1951) for a general formulation of statistical mechanics

models of long chain molecules. Fitting the WLC response function derived by

Marko and Siggia (1995) to the collagen fibril data of Graham et al. (2004) results

in values of A = 6 nm and L = 3480 nm. This is to be compared with A = 14.5 nm

and L = 309 nm, reported by Sun et al. (2002), for a single collagen molecule. Taken

together, these results demonstrate that the WLC analysis correctly predicts a col-

lagen fibril to be longer and more compliant than its constituent molecule due to

compliant intermolecular cross-links in fibrils.

To model a collagen network structure, the WLC model has been embedded as a

single constituent chain of an eight-chain model (Bischoff et al., 2002a,b), depicted

in Figure 2.6. Homogenisation via averaging then leads to the following functional
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form for the internal energy density, êc:7

ρc
0ê

c(F ec , ρc
0) =

NkθL

4A

(
2r2

L2
+

1

1 − r/L
−
r

L

)

+
γ

β
(Jec

−2β

− 1) + γ1 : (Cec − 1)

−
Nkθ

4
√

2L/A

(√
2A

L
+

1

4(1 −
√

2A/L)
−

1

4

)
log
(
λea2

1 λeb2

2 λec2

3

)
.

(2.28)

Here, N is the density of chains, and a, b and c are lengths of the unit cell

sides aligned with the principal stretch directions. The material model is isotropic

only if a = b = c. The elastic stretches along the unit cell axes are denoted by

λe
1, λ

e
2 and λe

3, respectively, and Cec = F ec
T

F ec is the elastic right Cauchy-Green

tensor of collagen. The factors γ and β control the bulk compressibility of the

model. The end to end chain length is given by r = 1
2

√
a2λe2

1 + b2λe2
2 + c2λe2

3 , where

λe
I =

√
N I · C

ecN I , and N I , I = 1, 2, 3 are the unit vectors along the three unit

cell axes, respectively. Since the quantities L, A and r occur only as the ratios L/A

and r/L in this model (2.28), Table 3.1 lists the lengths L, A, a, b, c used in the

computations in a non-dimensionalised manner.

2.3.3 A nearly incompressible ideal fluid

In this work, the fluid phase is treated as nearly incompressible and ideal, i.e.,

inviscid. The partial Cauchy stress in the fluid is:

(2.29) σf = det(F ef )−1P fF efT = h(ρf)1,

where a large value of h′(ρf) ensures near-incompressibility.

7Under the isothermal conditions assumed here, êc is independent of θ. Accordingly, we have
the parametrisation ec = êc(F ec , ρc

0) .
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Figure 2.6: The eight-chain model incorporating worm-like chains.
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Response of the fluid in tension; cavitation

The response of an ideal fluid, as defined by Equation (2.29), does not distinguish

between tension and compression, i.e., whether det(F ef ) R 1. Being (nearly) incom-

pressible, the fluid can develop compressive hydrostatic stress without bound—a case

that is modelled accurately. However, the fluid can develop at most a small tensile

hydrostatic stress (Brennen, 1995),8 and the tensile stiffness of the tissue is mainly

from the collagen phase. This is not accurately represented by (2.29), which models

a symmetric response in tension and compression.

Here, we preclude all tensile load carrying by the fluid by limiting det(F ef ) ≤ 1

as follows. We first introduce an additional component to the relation between

deformation of the pore space, given by F , the fluid stress-determining tensor, F ef

and the growth tensor for the fluid, F gf

. Consider the cavitation (void forming)

tensor, F v, defined by

(2.30) F efF gf

F v = F .

We restrict the formulation to include only saturated current configurations at

the initial time. Following Section 2.2.1, we have ṽf + ṽc = 1 at t = 0, the sat-

uration condition in Ωt when solutes are at low concentrations. At later times,

Equation (2.18) holds for F gf

. If det(F (F gf

)−1) ≤ 1 we set F ef = F (F gf

)−1

and F v = 1 for no cavitation. Otherwise, since det(F (F gf

)−1) > 1, we specify

F ef = det(F (F gf

)−1)−1/3F (F gf

)−1, thus restricting F ef to be unimodular and allow

cavitation by writing F v = F (F efF gf

)−1.

8Where, we are referring to the fluid being subject to net tension, not just a reduction in fluid
compressive stress from reference ambient pressure.
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These conditional relations are summarised as:

(2.31) F ef =





F (F gf

)−1, F v = 1 if det(F (F gf

)−1) ≤ 1,

det(F (F gf

)−1)−1/3F (F gf

)−1,

F v = F (F efF gf

)−1 otherwise.

2.3.4 Driving forces for fluid flux

Returning to the constitutive relation for species flux (2.25), we first recognise

that M ι = ρι0F
−1V ι is an implicit relation for V ι. Rewriting this instead as an

explicit one for ρι0V
ι we have,

ρι0V
ι =

(
1 +

D̃
ι
GRAD [V ] F−1

ρι0

)−1
D̃

ι

ρι0(
ρι0g + DIV [P ι] − ρι0F

−T (GRAD [eι] − θ GRAD [ηι])
)
.

From this, the constitutive relationship for mass flux is written as a product of a

mobility tensor and a thermodynamic driving force,

M ι = F−1

(
1 +

D̃
ι
GRAD [V ] F−1

ρι0

)−1
D̃

ι

ρι0
F−T

︸ ︷︷ ︸
D

ι

(
ρι0F

Tg + F TDIV [P ι] − ρι0 (GRAD [eι] − θ GRAD [ηι])
)

︸ ︷︷ ︸
Fι

.(2.32)

In particular, the constitutive relation for the flux of extra-cellular fluid relative

to collagen in the reference configuration takes the following form,

(2.33) M f = Df
(
ρf

0F
Tg + F TDIV

[
P f
]
− ρf

0GRAD
[
ψf
])
,
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where Df is the positive semi-definite mobility of the fluid, and isothermal conditions

are assumed in order to approximate the physiological ones.9

Experimentally determined transport coefficients (e.g. for mouse tail skin (Swartz

et al., 1999) and rabbit Achilles tendons (Han et al., 2000)) are used for the fluid

mobility values. Recall that the terms in the parenthesis on the right hand-side of

Equation (2.33) sum to give the total driving force for transport. The first term is

the contribution due to gravitational acceleration. In order to maintain physiological

relevance, this term has been neglected in the following treatment. The second term

arises from stress divergence. In the case of a non-uniform partial stress, P ι, there

exists a thermodynamic driving force for transport along P ι. For an ideal fluid,

it reduces to a pressure gradient, thereby specifying that the fluid moves down a

compressive pressure gradient, which is Darcy’s Law. The third term is the gradient

of the Helmholtz free energy potential, ψf = ef − θηf , where ef is the mass-specific

internal energy, θ is temperature and ηf is the mass-specific entropy. The entropy

gradient included in this term results in classical Fickean diffusion if only mixing

entropy exists, as discussed in the following section.

In practice, since the driving forces in (2.33) originate from different physics, it

proves useful (also seen in the following section) to rewrite (2.33) as

(2.34) M f = Df
P F TDIV

[
P f
]
− Df

ψ GRAD
[
ψf
]
,

where Df
P is now the permeability of the tissue, corresponding to stress gradient-

driven transport, and Df
ψ is the mobility, corresponding to transport of the fluid

phase through the porous solid driven by the gradient of the Helmholtz free energy.

9Additionally, this assumption allows application of the Legendre transformation ψι = eι − θηι

to rewrite GRAD [eι] − θ GRAD [ηι] as GRAD [ψι] |θ (at uniform temperature), where ψι is the
Helmholtz free energy potential.
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A B

C

Vacant space

Filled space

Figure 2.7: Saturation depicted at a microscopic scale.

Depicted at a microscopic scale, only unsaturated tissues A and B can undergo Fickean
diffusion of the fluid. C is saturated.

2.3.5 Saturation and Fickean diffusion

As depicted in Figure 2.7, only when pores are unsaturated are there multiple

configurations available to the fluid molecules at a fixed fluid concentration. This

leads to a non-zero mixing entropy. In contrast, if saturated, there is only a single

available configuration (degeneracy), resulting in zero mixing entropy. Consequently,

Fickean diffusion, which arises from the gradient of mixing entropy can exist only in

the unsaturated case. However, even a saturated pore structure can demonstrate con-

centration gradient-dependent mass transport phenomenologically: The fluid stress
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depends on fluid concentration (see Equation (2.29)), and fluid stress gradient-driven

flux appears as a concentration gradient-driven flux.

The saturation dependence of Fickean diffusion is modelled by using the measure

of saturation introduced in Section 2.2.1. We rewrite the free energy potential as:

ψf = ef − θηf , and

ηf → 0, as ṽf + ṽc → 1.(2.35)

It is again important to note that under physiological conditions, soft tissues are

fully saturated by fluid, and it is appropriate to set ψf = ef .

2.3.6 Solute transport

The dissolved solute species, denoted by s, undergo long range transport pri-

marily by being advected by the fluid. In addition to this, they undergo diffusive

transport relative to the fluid. This motivates an additional velocity split of the form

V s = Ṽ s + V f , where Ṽ s denotes the velocity of the solute relative to the fluid. The

constitutive relation for the corresponding flux, denoted by M̃ s, has the following

form, similar to Equation (2.33) defined for the fluid flux.

(2.36) M̃ s = Ds (−ρs
0 GRAD [ψs]) ,

where Ds is the positive semi-definite mobility of the solute relative to the fluid,

and again, isothermal conditions are assumed to approximate the physiological ones.

Following Section 2.1.2, there are no stress-dependent contributions to M̃ s.
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2.3.7 Nature of the sources

There exists a large body of literature, (Cowin and Hegedus, 1976; Epstein

and Maugin, 2000; Ambrosi and Mollica, 2002), that addresses growth in biolog-

ical tissue mainly based upon a single species undergoing transport and produc-

tion/annihilation. However, from a biochemical point of view, growth in soft bi-

ological tissue is the production and resorption of the tissue’s collagen phase as a

result of a complex cascade of biochemical reactions taking place within the cells (Al-

berts et al., 2002). These processes involve several species, and additionally involve

intimate coupling between mass transfer, biochemistry and mechanics.

An example of this chemo-mechanical coupling is seen in Figure 2.8 (from the

experimental work of Calve et al. (2007)), where the implantation of tendon-like en-

gineered collagenous constructs into live rats, and their conditioning in vivo (denoted

by the blue curve) leads to significant increases in the collagen strength and stiffness

(when compared to the in vitro control in green); highlighting the importance of the

biochemical environment on the processes underlying growth.

The modelling approach followed in this work is to select appropriate functional

forms of the source/sink terms, Πι, that abstract the complexity of the biochemistry.

Some specific examples follow.

(i) First-order chemical kinetics is one of the simplest possible choices for the

collagen source, and assumes that the production of collagen is governed by a first-

order rate law. Newly-produced collagen has proteoglycan molecules bound to it,

and they in turn bind water. This effect is modelled by associating a loss of nutrient-

bearing free fluid along with collagen production. A fluid sink Πf is introduced

following first order kinetics,
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Figure 2.8: Growth and strengthening under biochemical influences.

(2.37) Πf = −kf(ρf
0 − ρf

0ini
),

and the collagen source is mathematically equivalent to the fluid sink: Πc = −Πf .

For this functional form, when ρf
0 > ρf

0ini
, a certain reference value of the fluid

concentration, collagen is produced.

(ii) Michaelis-Menten enzyme kinetics (see, for e.g., Sengers et al. (2004)), which

involves a two-step reaction, introduces collagen and solute source terms given by

(2.38) Πs =
−(kmaxρ

s)

(ρs
m + ρs)

ρcell, Πc = −Πs,

where ρcell is the concentration of fibroblasts, kmax is the maximum value of the

solute production reaction rate constant, and ρs
m is half the solute concentration
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Figure 2.9: Growth and strengthening under mechanical influences.

corresponding to kmax. For details on the chemistry modelled by the Michaelis-

Menten model, see, for e.g., Bromberg and Dill (2002).

(iii) Strain energy-dependent sources induce growth at a point when the energy

density deviates from a reference value. Figure 2.9 (also from the experimental work

of Calve et al. (2007)) provides an example of the effect of mechanical influences on

the strengths and stiffnesses of tendons by comparing the stress-strain responses of

unloaded control specimens with those subjected to two different load cases (denoted

delay and no delay in the figure).

An example of source terms of this form was originally proposed in the context

of bone growth (Harrigan and Hamilton, 1993). I am not aware of studies that have

developed similar functional forms for soft tissue, and therefore have adapted this

example from the bone growth literature, recognising that this topic is in need of

further study. Suitably weighted by a relative concentration ratio, and written for
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collagen, this source term has the form

(2.39) Πc =

(
ρc

0

ρc
0ini

)−m

ec − ec
∗
,

where m is a non-negative exponent, ec is the mass-specific strain energy function

of collagen, and ec
∗

is a reference value of this strain energy density. Equation (2.39)

models collagen production when the strain energy density (weighted by a concentra-

tion ratio) at a point exceeds this reference value, and models annihilation otherwise.

2.4 Algorithmic considerations

Concluding the analytic formulation for biological growth presented in this chap-

ter, the following sections discuss some algorithmic details that are specific to our

system of interest, and underly the numerical examples of Chapter 3.

2.4.1 The role of mass balance in the current configuration

Before proceeding, let us first consider the central kinematic assumption underly-

ing the formulation: We assume that the pore structure deforms with the collagenous

phase. Therefore, the deformation gradient, F , is common to c and the fluid-filled

pore spaces. Furthermore, in what follows, we will treat the fluid as ideal and

nearly-incompressible, i.e. as elastic (Section 2.3.3). This combination of kinematic

and constitutive assumptions to be elaborated upon, implies that the stress in the

fluid phase is determined by the elastic part of F (see Sections 2.2 and 2.3.3). For

clarity we denote it as F ef . Importantly, the pore-filling fluid under stress can also

undergo transport relative to the pore network; i.e., relative to the collagenous phase.

This is the fluid flux, denoted by M f in the reference configuration. At the outset,

we preclude stress in any of the solute species, s. Only the solid collagen and fluid
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Figure 2.10: Pore structure at the boundary deforming with the tissue.

If the pore structure at the boundary deforms with the tissue and this boundary is in
contact with a fluid bath, the fluid concentration with respect to the current configuration,
i.e., ρf , remains constant.

bear stress.

Although the initial/boundary value problem of mass transport can be consis-

tently posed in the reference configuration, the evolving current configuration, Ωt, is

of greater interest from a physical standpoint for growth problems. It follows from

the discussion in the preceding paragraph that the shape and size of pores in Ωt is

determined by F . Therefore, at the boundary, the fluid concentration with respect

to Ωt remains constant if the boundary is in contact with a fluid bath. Accord-

ingly, this is the appropriate Dirichlet boundary condition to impose under normal

physiological conditions. This is shown in an idealised manner in Figure 2.10.

In the interest of applying boundary conditions (either specification of species

flux or concentration) that are physically meaningful, we use the local form of the

balance of mass in the current configuration,

(2.40)
dρι

dt
= πι − div[mι] − ριdiv[v], ∀ ι,

obtained by pushing-forward the balance of mass in the reference configuration (2.2)

to the current configuration, and is identical to the form derived from an Eulerian
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perspective in Section 4.1.1. Here, ρι(x, t), πι(x, t), and mι(x, t) are the current

mass concentration, source and mass flux of species ι respectively and v(x, t) is the

velocity of the solid phase. They are related to corresponding reference quantities as

ρι = (det (F ))−1 ρι0, π
ι = (det (F ))−1 Πι and mι = (det (F ))−1

FM ι. div[•] denotes

the spatial divergence operator, and the left hand-side in Equation (2.40) is the

material time derivative relative to the solid, which may be written explicitly as

∂
∂t
|X , implying that the reference position of the solid collagenous skeleton is held

fixed.

2.4.2 Incompressible fluid in a porous solid

Upon incorporation of the additional velocity split, vs = ṽs+vf , described in Sec-

tion 2.3.6, the resulting mass transport equation (2.40) in the current configuration

for the solute species is:

(2.41)
dρs

dt
= πs − div

[
m̃s +

ρs

ρf
mf

]
− ρsdiv[v].

In the hyperbolic limit, where advection dominates, spatial oscillations emerge in

numerical solutions of this equation (Brooks and Hughes, 1982; Hughes et al., 1987).

Figure 2.11 demonstrates this oscillation for a simple advection-diffusion problem at

a large Péclet number, which is a measure of the relative magnitude of advection to

diffusion. However, Equation (2.41) is not in standard advection-diffusion form, and

is thus not amenable to the application of standard stabilisation techniques (Hughes

et al., 1987). In part, this is because although the (near) incompressibility of the

fluid phase is embedded in the balance of linear momentum via the fluid stress, it

has not yet been explicitly incorporated into the transport equations. This section

proceeds to impose the fluid incompressibility condition and deduces implications for
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Figure 2.11: Spatial oscillations in the numerical solution (Pe = 100).

The standard Galerkin method for the advection-diffusion equation at large Péclet numbers
is unstable.

the solute mass transport equation, including a crucial simplification allowing for its

straightforward numerical stabilisation.

From Equation (2.40), the local form of the balance of mass for the fluid species

(assuming that the fluid species does not take part in reactions, i.e. πf = 0) in the

current configuration is

(2.42)
dρf

dt
= −div

[
mf
]
− ρfdiv [v] .

In order to impose the incompressibility of the fluid, we first denote by ρf0ini
the initial

value of the fluid reference concentration. Recall that the fluid concentration with

respect to the reference configuration evolves in time; ρf
0 = ρf

0(X, t). Therefore we

can precisely, and non-trivially, define ρf
0ini

(X):
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ρf
0(X, 0) =: ρf

0ini
(X)

= ρf
ini(x ◦ ϕ)J(X, t)

=
ρf(x ◦ ϕ, t)

Jfg(X, t)
J(X, t)

= ρf(x ◦ ϕ, t)�
�>
≈ 1 ∀ t

Jfe(X, t).

(2.43)

In (2.43), J := det(F ) and Jfg := det(F gf

). The quantity ρf
ini is defined by

the right hand-sides of the first and second lines of (2.43). To follow the argument,

consider, momentarily, a compressible fluid. If the current concentration, ρf , changes

due to elastic deformation of the fluid and by transport, then ρf
ini as defined is not

a physically-realised fluid concentration. It bears a purely mathematical relation

to the current concentration, ρf , since the latter quantity represents the effect of

deformation of a tissue point as well as change in mass due to transport at that

point.

If the contribution due to mass change at a point is scaled out of ρf the quotient

is identical to the result of dividing ρf
0ini

by the deformation only. This is expressed

in the relation between the right hand-sides of the second and third lines of (2.43).

The elastic component of fluid volume change in a pore is Jfe := det(F ef ), which

appears in the third line of (2.43) via the preceding arguments. Clearly then, for a

fluid demonstrating near incompressibility intrinsically (i.e., the true density is nearly

constant), we have Jfe ≈ 1 as indicated. Equation (2.43) therefore shows that for a

nearly incompressible fluid occupying the pores of a tissue, if we further assume that

the pore structure deforms as the solid collagenous skeleton, ρf
0(X, 0) ≈ ρf(x ◦ϕ, t);

i.e., the fluid concentration as measured in the current configuration is approximately
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constant in space and time. This allows us to write,

(2.44)
∂

∂t

(
ρf0ini

(X)
)
≡ 0 ⇒

∂

∂t

(
ρf (x ◦ ϕ, t)

) ∣∣∣
X

= 0,

which is a hidden implication of our assumption of a homogeneous deformation, i.e.,

F is the deformation gradient of solid collagen and the pore spaces. This leads to

dρf

dt
= 0.10

We therefore proceed to treat our fluid mass transport at steady state. Rewriting

the flux mf from Equation (2.42) as the product ρfvf and using the result derived

above,

0 =
∂ρf

∂t

∣∣∣∣
X

= −div
[
ρfvf

]
− ρfdiv [v] .

(2.45)

Returning to the solute mass transport relation (2.41) with this result,

dρs

dt
= πs − div

[
m̃s +

ρs

ρf
mf

]
− ρsdiv[v]

=
ρs

ρf




�������������:0

−div
[
ρfvf

]
− ρfdiv[v]




+ πs − div
[
m̃s
]
− mf · grad

[
ρs

ρf

]
.

(2.46)

Thus, using the incompressibility condition (2.45), we get the simplified form of the

balance of mass for an arbitrary solute species, s,

(2.47)
dρs

dt
= πs − div

[
m̃s
]
−

mf · grad [ρs]

ρf
+
ρsmf · grad

[
ρf
]

ρf2 .

Using the pushed-forward form of the constitutive relationship for solute flux with

respect to the fluid (2.36), this is now in standard advection-diffusion form,

10Which results in a very large pressure gradient driven flux due to incompressibility.
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Figure 2.12: Smooth solution from a stabilised method (Pe = 100).

The streamline upwind Petrov-Galerkin method for the advection-diffusion equation is
stable even at large Péclet numbers.

dρs

dt
− div

[
D̄s grad [ρs]

]
︸ ︷︷ ︸

Diffusion term

− πs
︸︷︷︸

Source term

=

−
mf · grad [ρs]

ρf︸ ︷︷ ︸
Advection term

+
ρsmf · grad

[
ρf
]

ρf2 ,

︸ ︷︷ ︸
Additional, ρs-dependent source term

(2.48)

where D̄s is a positive semi-definite diffusivity, mf/ρf is the advective velocity,

and πs is the volumetric source term. This form is well suited for stabilisation

schemes such as the streamline upwind Petrov-Galerkin (SUPG) method11 (see, for

e.g., Hughes et al. (1987)), which limit spatial oscillations otherwise observed when

the element Péclet number is large. Figure 2.12 shows the SUPG-stabilised solu-

tion for the simple advection-diffusion problem considered previously at an identical

Péclet number.
11Appendix B.2 provides, in weak form, the SUPG-stabilised method for Equation (2.48).



CHAPTER 3

Representative numerical simulations – I

Stemming in no small part from the physical richness of the system under con-

sideration, the theoretical formulation presented in the preceding chapter resulted in

a set of coupled, nonlinear partial differential equations governing the interrelated

mechanical and biochemical processes underlying biological tissue growth.

In this chapter, a finite element implementation employing a staggered scheme

is used to solve this system of equations for a varied class of numerical examples

which aim to demonstrate the applicability of the theory, and study aspects of the

coupled phenomena as the tissue grows. In Section 3.1, the numerical methods used

for coupling reaction, transport and mechanics are outlined, and the computational

model used in the simulations is introduced. The opening example, presented in

Section 3.2, incorporates all of the theory discussed and acts as a model for localised,

bolus delivery of regulatory chemicals to tendons while accounting for mechanical

effects. In order to suppress some of the coupled phenomena, and take a closer look

at the physics of porous soft tissues, Section 3.3 considers some examples based on

a simplified system comprised only of a solid phase and a fluid phase.

3.1 Introducing the computational model

The mathematical formulation developed in Sections 2.1–2.4 has been imple-

mented in a finite element setting using FEAP (Taylor, 1999), a general purpose

48
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nonlinear finite element program. The implementation is in three-dimensions and

uses eight-noded hexahedral elements.

The mass balance equation (2.40) for ι = f is solved to determine the current

concentration field of the fluid phase,1 ρf . The current concentration of the solute, ρs,

is determined from the stabilised form of the mass balance equation provided in

weak form in (B.1). The mass balance for the solid phase is solved in the reference

configuration (Equation (2.2) for ι = c) to obtain its reference concentration field, ρc
0,

since there are no boundary conditions associated with this differential equation.

Backward Euler is used as the time-stepping scheme for all mass balance equations.

In the implementation presented in this chapter, the tissue is viewed as a single

entity when imposing the balance of momentum; and a summation of Equation (2.7)

over ι = c, f is solved using the relation (2.10) for the common displacement field, u,

of the tissue and the fluid-filled pores.2 Non-linear projection methods (Simo et al.,

1985) based on hexahedral elements are used to treat the near-incompressibility

imposed by the fluid, and mixed methods, as described in Garikipati and Rao (2001),

are used for stress (and strain) gradient driven fluxes. Since the time scale for mass

transport is much larger than that for mechanics, and since we are not focusing on

inertial effects for the growth problems presented in this chapter, the momentum

equation is solved as a quasi-static problem.3

The coupling between mass transport and mechanics is achieved by an iterative

operator-splitting algorithm (Armero, 1999; Garikipati et al., 2001). Illustratively, in

the simplest case of a biphasic problem involving no interconversion between species,

1Recall from Section 2.4.1 that the physics of fluid-tissue interactions and the imposition of
relevant boundary conditions are best understood and represented in the current configuration.

2The consequences of this simplification are explored in Section 3.3.1.
3The numerical experiments presented in Section 5.3 contrast the results obtained from quasi-

static and dynamic calculations.
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this algorithm, in explicit terms, reads:

At each time step, repeat:

◦ Fix the fluid concentration field; solve the mechanics

problem for the displacement field, u

◦ Fix the displacement field; solve the mass-transport

problem for the concentration field, ρf

until both problems converge.

Its generalisation to other cases involving additional differential equations is straight-

forward.

The model geometry, based on the experimental work of Calve et al. (2004) on

the engineering and characterisation of tendon-like constructs (see Figure 3.1), is a

cylinder 12 mm in length and 1 mm2 in cross-sectional area. The corresponding

finite element mesh using 3840 hexahedral elements is shown in Figure 3.2. The

constitutive relation for the solid collagen phase uses the strain energy function

arising from the eight-chain model incorporating worm-like chains, as discussed in

Section 2.3.2. The constitutive relation for the (ideal) fluid stress follows (2.29) with,

(3.1) h(ρf) =
1

2
κf

(
ρf

0ini

ρf
− 1

)2

,

where κf is the bulk modulus of the fluid.

The tissue is modelled as being fluid saturated in Ωt at t = 0 s, i.e. (2.181)

holds with ρf
0sat

= ρf
0ini

. However, the tissue is allowed to become unsaturated in

Ωt for t > 0 s due to void formation. Then, the conditions set out in (2.31) apply.
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Figure 3.1: Engineered tendon construct (Calve et al., 2004).

The chemical potential is then given by (2.35). The numerical examples that follow

discuss further specialisation of the constitutive relations to relevant cases.

The initial and boundary conditions have been chosen in order to model a few

common mechanical and chemical interventions on engineered tissue, and the numer-

ical values of parameters4 that have been used are relevant to tendons and appear

in Table 3.1.

3.2 A multiphasic problem based on enzyme-kinetics

This first example can be viewed as a model for localised, bolus delivery of reg-

ulatory chemicals to the tendon while accounting for mechanical (stress) effects. A

4The mobility tensor reported in Table 3.1 is an order-of-magnitude estimate recalculated from
Han et al. (2000) to correspond to the mobility used in this work. These authors reported a mean
value of 0.927 × 10−14 s, with a range of 1.14 × 10−14 − −0.58 × 10−14 s in terms of the mobility
used here. Theirs is the mobility parallel to the fibre direction in Rabbit Achilles tendon. Here, it
is used as an isotropic mobility. Using anisotropic mobilities, or different values from the reported
range changes the result quantitatively, but not qualitatively.



52

1.1284 mm

12.0 mm

Figure 3.2: The finite element mesh used in the computations.

single solute species5, denoted by s, and a uniform distribution of fibroblasts that

are characterised by their cell concentration, ρcell, are considered. Both Fickean dif-

fusion of the solute and stress gradient driven fluid flow are incorporated in this

illustration. Michaelis-Menten enzyme kinetics (2.38) is used to determine the rates

of solute consumption and collagen production as a function of solute concentration.

This nonlinear relationship for our choice of parameters is visualised in Figure 3.3.

Here, the fluid phase does not take part in reactions, and hence πf = 0 kg.m−3.s−1.

The tendon immersed in the bath is subjected to a constrictive radial load, such

as would be imposed upon manipulating it with a set of tweezers, as depicted in Fig-

ure 3.4. The maximum strain in the radial direction—experienced half-way through

the height of the tendon—is 10%. The applied strain in the radial direction decreases

5Here, we envision the solute to be a protein playing an essential role in growth by catalysing
biochemical reactions. An important example of this is a family of proteins, TGFβ, which is a
multi-functional peptide that controls numerous functions of many cell types (Alberts et al., 2002).
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Parameter (Symbol) Value Units

Chain density (N) 7 × 1021 m−3

Temperature (θ) 310.6 K
Persistence length (A) 2.10 –
Fully-stretched length (L) 2.125 –
Unit cell axes (a, b, c) 1.95, 1.95, 2.43 –
Bulk compressibility factors (γ, β) 1000, 4.5 KPa, –
Fluid bulk modulus (κf ) 1 GPa
Fluid mobility tensor (Df

ij = Dfδij) 1 × 10−14 s

Fibroblast concentration (ρcell) 0.2 kg.m−3

Max. reaction rate (kmax = 5) 5 s−1

Max. solute concentration (ρs
m) 0.2 kg.m−3

Solute diffusivity (Ds) 1 × 10−9 m−2s

Table 3.1: Material parameters used in the analysis.
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N · M f

N · M f

u u

Figure 3.4: Constrictive load applied to the tendon immersed in a bath.

linearly with distance from the central plane, and vanishes at the top and bottom

surfaces of the tendon.

The initial collagen concentration and the initial fluid concentration are both

500 kg.m−3 at every point in the tendon, and the fluid concentration in the bath is

500 kg.m−3. In addition, a solute-rich bulb of radius 0.15 mm is introduced with

its centre on the axis of the tendon and situated 3 mm below the upper circular

face of the tendon. The initial solute concentration is 0.05 kg.m−3 at all points in

the tendon other than this solute-rich bulb, where the solute concentration increases

linearly with decreasing radius to 1 kg.m−3 at its centre (see Figure 3.5).

The aim of this example is to compare the influences upon solute transport from

two mechanisms: Fluid stress gradient-driven transport, arising from the applied

constrictive load, and solute concentration gradient-driven transport. These mecha-

nisms have both been implicated in nutrient supply to cells in soft tissue.
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Figure 3.5: The solute concentration (kg.m−3) initially.

The results of this numerical example demonstrate that because the magnitude of

the fluid mobility for stress gradient-driven transport is orders of magnitude smaller

than the diffusion coefficient for the solute through the fluid, there is relatively only

a small stress gradient-driven flux, and the transport of the solute is diffusion dom-

inated. As a result, the solute diffuses locally, but displays no observable advection

along the fluid at the time-scales considered. As the diffusion-driven solute concen-

tration in a region increases, the enzyme-kinetics model results in a small source

term for collagen production, and we observe nominal growth. Figure 3.6 shows the

collagen concentration at an early time, t = 5 × 10−2 s.

This example incorporates all of the theory discussed in Chapter 2. However, in

order to gain a better understanding of the flow-physics underlying this problem, it

proves useful to simplify the setting and suppress some of the coupled phenomena.

This is the approach followed in the next two numerical examples. The detailed
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Figure 3.6: The collagen concentration (kg.m−3) at time t = 5 × 10−2 s.

transport and mechanics induced by the constrictive radial load are discussed first

in Section 3.3.1.

3.3 Examples exploring the biphasic nature of porous soft tissue

In these calculations, only two phases—fluid and collagen—are included for the

mass transport and mechanics. As before, the parameters used in the analysis are

the same as those presented in Table 3.1.

3.3.1 The tendon under constriction

In this example, the tendon immersed in a bath is subjected to the same constric-

tive radial load as in Section 3.2. Since that example demonstrated an insignificant

amount of local collagen production over the time scale of the test, we work with a

simplified problem by setting the collagen source term Πc = 0. The total duration

of the simulation is 10 s, and the radial strain is applied as a displacement boundary
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condition, increasing linearly from no strain initially to the maximum strain at time

t = 1 s. Again, both the initial collagen concentration and the initial fluid concen-

tration are 500 kg.m−3 at every point in the tendon. This tendon is exposed to a

bath where the fluid concentration is 500 kg.m−3.

As mentioned in Section 3.1, when solving the balance of momentum for the

biphasic problem of the solid collagen and a fluid phase, the tissue is currently

treated as a single entity, employing a summation of Equation (2.7) over both species.

Additionally, condition (2.10) allows us to avoid constitutive prescription of the mo-

mentum transfer terms between solid collagen and fluid phases, qc and qf . This

facilitates considerable simplification of the problem, but such a treatment requires

additional assumptions on the detailed deformation of the constitutive phases of the

tissue.

Ω0

Ωt

F

Solid, ‘c’
Fluid, ‘f’

Figure 3.7: Upper bound model from strain homogenisation.

An implicit assumption we have drawn on thus far is the equality of the deforma-

tion gradient of the solid collagen and pore spaces, allowing us to use the deformation

gradient F , suitably decomposed to account for change in species concentration, to

model the fluid stress. This assumption, depicted in Figure 3.7, had important con-

sequences for the developments in Chapter 2.
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Figure 3.8: Upper bound vertical fluid flux (kg.m−2.s−1) at t = 1 s.

Since the imposition of a common deformation gradient results in an upper bound

for the effective stiffness of the tissue and magnitudes of the fluxes established, we

refer to it as the upper bound model. This assumption plays a fundamental role in

determining the fluid flux driven by the fluid stress gradient.

For this upper bound model, Figure 3.8 shows the fluid flux in the vertical direction

at the final stage of the constriction phase of the simulation, i.e. at time t = 1 s. The

flux values are positive above the central plane, forcing fluid upward, and negative

below, forcing fluid fluid downward. This stress-gradient induced fluid flux results

in a reference concentration distribution of the fluid that is higher near the top and

bottom faces, as seen in Figure 3.9.

As a result, these regions would have seen a higher production of collagen, or

preferential growth, in the presence of non-zero source terms. As discussed in Sec-

tion 2.4.1, the mass transport equations are solved in the current configuration, where
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Figure 3.9: Reference fluid concentration (kg.m−3) at time t = 1 s.

physical boundary conditions can be set directly. The values reported in Figure 3.9

are pulled-back from the current configuration. The current concentrations do not

change for this boundary value problem.

Solving a problem of this nature in the reference configuration, and setting ρf
0

to a constant on the boundary to represent immersion of the tendon in a fluid bath

yields non-physical results, such as an unbounded flow. This occurs since the imposed

strain gradient causes a stress gradient in the fluid that does not decay. The imposed

boundary condition on ρf
0 prevents a redistribution of concentration that would have

provided an opposing, internal gradient of stress, which in turn would drive the flux

to vanish.

The tendon is held fixed in the radial direction after the constriction phase. The

applied stress sets up a pressure wave in the fluid travelling toward the top and
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Figure 3.10: Relaxation of the top face of the tendon after constriction.

bottom faces. As the fluid leaves these surfaces, we observe that the tendon relaxes.

This is seen in Figure 3.10, which plots the vertical displacement of the top face with

time, showing a decrease in height of the tendon after the constriction phase. The

centre of the bottom face of the tendon is kept fixed.

In order to define a range of the magnitude of fluid flux, we now introduce the

lower bound model (on effective stiffness of the tissue and, consequently, the mag-

nitude of the fluid flux). For this lower bound, we replace the earlier strain ho-

mogenisation requirement with a stress homogenisation requirement, viz. equating

the hydrostatic stress of the solid phase and the fluid pressure in the current config-

uration:

(3.2) pf =
1

3
tr[σc],

where pf is the fluid pressure in the current configuration, tr[•] is the trace operator,

and σc = 1
Jc P

cF cT is the Cauchy stress of the solid. The Cauchy stress of an
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ideal fluid can be defined from its current pressure as σf = pf 1. This assumption is

depicted in Figure 3.11.

Ω0

Ωt

F

Solid, ‘c’
Fluid, ‘f’

Figure 3.11: Lower bound model from stress homogenisation.

Figure 3.12 reports the value of the vertical flux under the lower bound modelling

assumption, using boundary conditions identical to the previous calculation at time

t = 1 s, the final stage of the constriction phase of the simulation.
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Figure 3.12: Lower bound vertical fluid flux (kg.m−2.s−1) at t = 1 s.

The fluid flux values reported in Figures 3.8 and 3.12 (corresponding to the upper

and lower bound modelling assumptions, respectively) are qualitatively similar, but
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differ by about three orders of magnitude. This wide range points to the importance

of imposing the appropriate mechanical coupling model between interacting phases.6

Note, however, that we now have the range of possible fluid flux values under the

specified mechanical loading. Recall, furthermore, that the example in Section 3.2

used the upper bound model, and yet resulted in no discernible advective solute

transport. This suggests strongly that, given the parameters in Table 3.1, convective

transport of nutrients in tendons is dominated by diffusive transport.

This numerical example also points to the fact that a convenient measure of

the strength of coupling between the mechanics and mass transport equations is

the ratio of the variation in hydrostatic stress of the fluid to that of the solid. In

the lower bound case, where the fluid response is defined by Equation (3.2), it is

instructive to note that this ratio is unity. As a result, it is seen that the lower

bound case exhibits significantly weaker coupling than the upper bound case. In the

latter, variation in the common deformation gradient, δF , causes an instantaneous

variation in δpf ≈ O(κfδF : F−T) and in 1
3
δtr[σc] ≈ O(κcδF : F−T), where κc is the

bulk modulus of the solid. The ratio δpf
1
3
δtr[σc]

is therefore ≈ O(κf/κc) ≫ 1.

The strength of coupling between the equations plays a principal role in the rate of

convergence of the solution, as observed in Table 3.2, where the residual norms of the

equilibrium equation (and corresponding CPU times in seconds for an Intel R© Xeon

3.4 GHz machine) are reported for the first 8 iterations of each of the two cases.

Recall that the staggered scheme involves solution of the mechanics equation keeping

the concentrations fixed, and the mass transport equation keeping the displacements

6The computational implementation used in Chapter 5 models the mechanical coupling between
the phases by specifying the momentum transfer terms, qι, between the solid and fluid phases. It
works with these quantities by solving the detailed balance of momentum equations (i.e. a pushed-
forward form of Equation (2.7) for each species individually), and obviates the need for either of
these homogenisation assumptions.



63

Pass Strongly coupled Weakly coupled
Residual CPU (s) Residual CPU (s)

1 2.138 × 10−02 29.16 6.761 × 10−04 28.5
3.093 × 10−04 55.85 1.075 × 10−04 55.1
2.443 × 10−06 82.37 4.984 × 10−06 81.8
2.456 × 10−08 109.61 1.698 × 10−08 107.9
4.697 × 10−14 135.83 3.401 × 10−13 134.1
1.750 × 10−16 163.18 1.152 × 10−17 161.1

2 5.308 × 10−06 166.79 5.971 × 10−08 192.5
4.038 × 10−10 193.36 4.285 × 10−11 218.6
1.440 × 10−14 220.45 2.673 × 10−15 246.1
4.221 × 10−17 247.04

3 5.186 × 10−06 250.62 2.194 × 10−09 277.3
3.852 × 10−10 277.44 2.196 × 10−13 304.2
1.369 × 10−14 304.16 1.096 × 10−17 331.6
4.120 × 10−17 331.47

4 5.065 × 10−06 335.16 8.160 × 10−11 363.2
3.674 × 10−10 362.24 7.923 × 10−15 390.2
1.300 × 10−14 388.79
4.021 × 10−17 416.08

5 4.948 × 10−06 419.59 3.078 × 10−12 421.4
3.503 × 10−10 446.24 3.042 × 10−16 448.6
1.236 × 10−14 473.20
3.924 × 10−17 500.85

6 4.832 × 10−06 504.65 1.179 × 10−13 479.9
3.340 × 10−10 531.28 1.291 × 10−17 507.0
1.174 × 10−14 558.17
3.829 × 10−17 585.27

7 4.720 × 10−06 589.01 4.592 × 10−15 537.8
3.184 × 10−10 616.24 5.152 × 10−18 564.6
1.116 × 10−14 643.29
3.737 × 10−17 670.83

8 4.609 × 10−06 674.46 1.816 × 10−16 595.5
3.034 × 10−10 701.74 5.040 × 10−18 622.3
1.060 × 10−14 727.74
3.646 × 10−17 755.58

Table 3.2: Mechanics equation residual norms.

Mechanics equation residual norms and corresponding CPU times in seconds for the first
8 passes of each of the two cases for a typical time increment, ∆t = 0.1 s.
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fixed, in turn, until the solution converges. The table does not report the value

of the residual norms arising from the solution of the mass transport equation for

the fluid, which occurs after each reported solve of the of the mechanics equation.

Although the initial mechanics residual norms in successive passes are decreasing

linearly in both cases, the rapid decrease in this quantity in the weakly-coupled case

ensures convergence in far fewer iterations than the strongly coupled case. Thus, the

corresponding CPU times reported are also significantly lower for the weakly coupled

case, which is is advantageous. In addition to being more physical, as argued below,

the lower bound, weakly-coupled case makes it feasible to drive problems to longer,

physiologically-relevant time-scales through the use of larger time steps. Motivated

mainly by this recognition that the lower bound model for solid-fluid mechanical

coupling ensures convergence to a self-consistent solution in just a few passes of the

staggered solution scheme, it is used in the final example in this chapter.

Note that the individual balance of linear momentum equations for the solid col-

lagenous and fluid phases with the momentum transfer terms (qc, qf in (2.7)) is a

statement of momentum balance between them. There is reason to suppose, there-

fore, that equating the solid collagen and fluid stress, or some component of these

tensors as done in the lower bound model, is a reasonable approximation to explicitly

solving the balance of linear momentum for each phase, including the momentum

transfers, as carried out in Chapter 5. In contrast, equating the deformation gradient

of the solid collagen with deformation of the pore spaces in the upper bound model

subjects the fluid to a stress state also determined by this deformation gradient. This

approximation does not correspond to an underlying physical principle comparable

to the satisfaction of individual balances of linear momentum for the solid collagen

and fluid, with momentum transfers.
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3.3.2 A swelling problem

In this final example, we study the mechanical effects of growth due to collagen

production. In the interest of focusing on this issue, we assume that fibroblasts

are available, and that the fluid phase bears the necessary nutrients for collagen

production dissolved at a suitable, constant concentration. Collagen production is

assumed to be governed by a first-order rate law, as discussed in Section 2.3.7 (i). In

this calculation, the reaction rate, kf , is 0.07 s−1.
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Figure 3.13: The initial collagen concentration (kg.m−3).

The boundary conditions in this example correspond to immersion of the tendon

in a nutrient-rich bath. The initial constant collagen concentration is 500 kg.m−3

and the fluid concentration is 400 kg.m−3 at every point in the tendon. When

this tendon is exposed to a bath where the fluid concentration is 410 kg.m−3, i.e.

ρf(x, t) = 410 kg.m−3 ∀ x ∈ ∂Ωt, nutrient-rich fluid is transported into the tissue

due to the pressure difference induced by the concentration difference between the
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Figure 3.14: The collagen concentration (kg.m−3) after 1800 s.

fluid in the tendon and in the bath. Thereby, the nutrient concentration is elevated,

leading to collagen production, fluid consumption and, eventually, growth due to the

addition of collagen.

Figure 3.13 shows the initial collagen concentration in the tendon. After it has

been immersed in the nutrient-rich bath for 1800 s, the tendon shows growth and

the collagen concentration is higher, as seen in Figure 3.14. On performing a uniax-

ial tension test on the tendon before and after growth, it is observed (Figure 3.15)

that the grown tissue is stiffer and stronger due to its higher collagen concentra-

tion. Qualitatively, this compares favourably with the experimental work of Arruda

et al. (2005), where self-organised tendon constructs after growth induced by cyclic

stretching are found to contain more collagen and become more stiff (see Figure 3.16).

There is a rapid, fluid transport-dominated swelling of the tendon between 0

and 25 s following immersion in the fluid bath (Figure 3.17). This causes a small
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Figure 3.15: The stress (Pa) vs stretch curves before and after growth.

Figure 3.16: The tensile response of tendon constructs (Arruda et al., 2005).

The stress (MPa) vs strain response of self-organised tendon constructs before and after
growth induced by cyclic stretching.
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volume change of ≈ 1.6%. In this transport-dominated regime, the contribution to

tendon growth from collagen production is small. However, the fluid-induced swelling

saturates, and between 25 and 1800 s, the reaction producing collagen dominates the

growth process, producing a further ≈ 6.8% volume change. Noting that the range

of collagen concentration in Figure 3.14 is 585 − 626 kg.m−3, and that (2.17) gives

F gc

=
(

ρc0
ρc0ini

) 1
3

1, this portion of the volume change is quite clearly due to collagen

production. The total volume change of 8.4% corresponds to changes in each linear

dimension of the tendon by only ≈ 2.7%, and is not discernible upon comparing

Figures 3.13 and 3.14. It is, however, manifest in Figure 3.17.
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Figure 3.17: The volume of the tendon (m3) evolving with time.

Note the fluid transported-dominated regime until 25 s, followed by the longer reaction-
dominated growth stage.



CHAPTER 4

An Eulerian perspective

As detailed at the outset of Chapter 2, the continuum treatment presented thus

far has stemmed from classical theories for solid continua, which are traditionally

formulated in a Lagrangian setting. Since our continuum idealisation of tissues in-

cludes fluid components, and material coordinates are, in general, not known in fluid

mechanics, this chapter revisits the derivation of the governing field equations of

growing tissues following an Eulerian approach.

In this spatial description, attention is turned to a region of space coinciding

with the current configuration of the tissue, where the evolution of field variables of

interest is studied. Remarkably, this dissimilar approach results in a set of balance

equations which is completely equivalent to that deduced in Section 2.1, just pushed-

forward to the current configuration. But more significantly, the spatial approach

presented below naturally leads to the identification of a different set of primitive

variables more suitable to physically relevant boundary value problems.

This chapter is divided into two main parts. The first part (Section 4.1) briefly

recapitulates the fundamental quantities characterising the tissue, pointing out note-

worthy differences from Section 2.1, and derives the balance laws governing finite

deformation growth in terms of spatial quantities. The second (Section 4.2), closes

this set of balance laws by deducing a set of physiologically relevant constitutive re-

lationships which ensure that the entropy production inequality is satisfied a priori.

69
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Figure 4.1: An Eulerian point of view.

4.1 Balance laws for an open mixture

We initiate this discussion with the introduction of Ωt, a temporally-varying clo-

sure of an open set in R
3 with a piecewise smooth boundary, which we define to be

our region of interest. This region of interest is constructed to coincide with the cur-

rent position of the solid component of the tissue, and our primary interest lies in the

evolution of various field variables inside Ωt, as observed from an inertial reference

frame (Newton (1726), Corollary V, p. 423).

It is assumed that the there exists a C 2 (in space and time), bijective and ori-

entation preserving map ϕt(X) : R
3 × R

+ ∪ {0} → R
3 such that Ωt = ϕt(Ω0) for

some convenient, fixed subset of R
3, Ω0. This ensures that Ωt evolves in a well-

behaved manner, disallowing non-physical deformations from being imposed on the

tissue, and furthermore, affords the application of Reynolds’ Transport Theorem



71

(Appendix A.2). The map ϕt is visualised in Figure 4.1.

Denoting a point in Ωt by x, v(x, t) =
∂ϕt

∂t
defines the spatial velocity of the

system domain. In contrast to Section 2.1, it is recognised at the outset that each

species of the tissue is capable of undergoing its own motion independent of the

tissue’s solid component; and so we introduce the spatial velocity of an arbitrary

species ι, vι(x, t), which is assumed to be C 1 in space and time.1 Unlike the cor-

responding quantities defined in Section 2.1.2, these velocities are defined to be the

total velocities of each species, not velocities relative to the solid component of the

tissue.2

The following discussion of balance laws is carried out entirely in terms of an ar-

bitrary species ι, and specialisation to the solid collagenous, fluid and solute phases

(i.e. ι = c, f, s) is reintroduced only in Section 4.2 when discussing constitutive rela-

tionships specific to these different components of the tissue.

4.1.1 Balance of mass

We now turn our attention to the evolution of the first of our field variables of

interest, the current concentration of an arbitrary species ι constituting the system,

ρι(x, t) : R
3 × R

+ ∪ {0} → R. These are defined as the mass of species ι per unit

system volume, Ωt, and are assumed to be C 1 in time and C 2 in space. The total

spatial density of the tissue can be obtained by their summation,
∑
ι

ρι = ρ.

With these quantities defined, we have from the conservation of matter for species

ι over Ωt,

1It is important to note that these quantities are primitive variables in themselves. While these

species velocities can be formally understood as vι(x, t) =
∂ϕι

t

∂t
, where ϕι

t is the deformation map
of each species ι from an arbitrary reference configuration to Ωt (shown in the portion of Figure 4.1
constructed using dashed-lines), the quantities ϕι

t are neither explicitly defined nor tracked.
2And, with the redefinition of these quantities as total velocities, the velocity of the solid phase

ceases to be special. This is manifest in the forms of the balance laws deduced in Sections 4.1.1–4.1.4.
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(4.1)
d

dt

(∫

Ωt

ρι dv

)

︸ ︷︷ ︸
Rate of change of mass

=

∫

Ωt

πι dv

︸ ︷︷ ︸
Mass being created

−

∫

∂Ωt

ρι (vι − v) · n da,

︸ ︷︷ ︸
Mass leaving the domain

where πι(x, t) is the volumetric source (or sink) of species ι, which specifies the

species’ mass production rate per unit system volume, and n is the outward normal

vector over ∂Ωt, the boundary of Ωt. At this point, the only restriction on the source

terms, πι(x, t), is that they be integrable.

On applying Reynolds’ Transport Theorem (Appendix A.2) to the left hand-side,

∫

Ωt

∂ρι

∂t
dv +

��������
∫

∂Ωt

ριv · n da =

∫

Ωt

πι dv −

∫

∂Ωt

ρι (vι −�v) · n da,

Gauss’ Divergence Theorem (Appendix A.1) to the area integral,

∫

Ωt

∂ρι

∂t
dv =

∫

Ωt

πι dv −

∫

Ωt

div (ριvι) dv,

and localising, we arrive at the final form of the balance of mass of species ι,

(4.2)
∂ρι

∂t
= πι − div (ριvι) in Ωt,

where div(•) denotes the spatial divergence operator. This result is consistent with

classical mixture theory (Truesdell and Toupin, 1960) and is the current configuration

analogue of Equation (2.2).

As in Section 2.1.1, recall that for an external observer, the rate of change of mass

of the entire system, affected only by external agents, is independent of interconver-

sion between species. From the viewpoint of such an observer, the balance of mass

for the tissue as a whole reads,
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(4.3)
d

dt

∑

ι

(∫

Ωt

ρι dv

)
= −

∑

ι

∫

∂Ωt

ρι (vι − v) · n da.

Comparing Equation (4.3) to a summation of Equation (4.1) over all species, both

being valid statements of the balance of mass of the tissue as a whole, it is clear that

the sources and sinks satisfy,

(4.4)
∑

ι

πι = 0,

which specifies that, during biochemical interactions between species, the rate of

consumption of the reactants equals the rate of creation of the products.

An identical relation is obtained by Truesdell and Toupin (1960) and others who

follow their ideas (see, for e.g., Bowen (1976) and Passman et al. (1984)), but their

deduction of this result, and other similar results involving quantities internal to the

system (Equations (4.8) and (4.14)), stems from a formally stated assumption that

“the mean response of a heterogeneous mixture obeys the ordinary equations of a

continuum.” While we do not explicitly employ this assumption, it is implicit in our

assertion that external observers can quantify field variables characterising species

within a system without being aware of phenomena internal to the system.

4.1.2 Balance of linear momentum

We now look at how the momentum of a species evolves under the action of

external agents, accounting for mass sources and allowing for the possibility that

matter can leave the domain.

As observed from an inertial reference frame, the balance of momentum of a

species ι over Ωt requires,
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d

dt

(∫

Ωt

ριvι dv

)

︸ ︷︷ ︸
Rate of change of momentum

=

∫

Ωt

ρι (gι + qι) dv

︸ ︷︷ ︸
Resultant body force

+

∫

∂Ωt

σιn da

︸ ︷︷ ︸
Boundary traction

+

∫

Ωt

πιvι dv

︸ ︷︷ ︸
Momentum being created

−

∫

∂Ωt

(ριvι) (vι − v) · n da,

︸ ︷︷ ︸
Momentum leaving the domain

(4.5)

where, in addition to the quantities introduced previously, gι(x, t) is the resultant

body force of external origin acting on species ι, qι(x, t) is the resultant body force

on species ι from all other species in the mixture, and σι(x, t) is the partial Cauchy

stress on species ι. The partial Cauchy stress tensor corresponding to species ι is the

portion of the total stress borne by the species. All of these quantities are assumed

to be sufficiently smooth. In particular, gι and qι are assumed to be integrable, and

σι is assumed to be C 1 in space and time.

Application of Reynolds’ Transport Theorem (Appendix A.2) to the left hand-side

of Equation (4.5) yields,

∫

Ωt

∂ (ριvι)

∂t
dv +

����������∫

∂Ωt

(ριvι) v · n da =

∫

Ωt

ρι (gι + qι) dv +

∫

∂Ωt

σιn da

+

∫

Ωt

πιvι dv −

∫

∂Ωt

(ριvι) (vι −�v) · n da.

Using the product rule, Gauss’ Divergence Theorem (Appendix A.1), and the balance

of mass3 (Equation 4.2), we have,

�������∫

Ωt

∂ρι

∂t
vι dv +

∫

Ωt

ρι
∂vι

∂t
dv =

∫

Ωt

ρι (gι + qι) dv +

∫

Ωt

div (σι) dv

+
������∫

Ωt

πιvι dv −

∫

Ωt

((((((((
div (ριvι) vι + grad (vι) ριvι) dv,

3Recognising that the balance of mass need not be satisfied exactly, pointwise, in a numerical
implementation.
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where grad(•) denotes the spatial gradient operator. Upon localisation, we obtain

the final form of the balance of momentum of species ι,

(4.6) ρι
∂vι

∂t
= ρι (gι + qι) + div (σι) − grad (vι) ριvι in Ωt,

which is a result consistent with classical mixture theory (Truesdell and Toupin,

1960) and is the current configuration analogue of Equation (2.7).

Neglecting the interaction terms as an external observer, the balance of momen-

tum for the entire system can be written as follows,

∑

ι

d

dt

(∫

Ωt

ριvι dv

)
=
∑

ι

(∫

Ωt

ριgι dv +

∫

∂Ωt

σιn da

)

−
∑

ι

∫

∂Ωt

(ριvι) (vι − v) · n da.

(4.7)

Comparing Equation (4.7) to a summation of Equation (4.5) over all species, it is

clear that the sources and interaction forces satisfy the relation,

(4.8)
∑

ι

(ριqι + πιvι) = 0,

which states that the momentum being introduced at a point due to the creation

of matter has to be negated by momentum interactions with other species; ensuring

that there is no mechanism for momentum production internal to the system.

4.1.3 Balance of angular momentum

Consider the position vector p(x) of a point on the tissue relative to a fixed point4

in space. The balance of angular momentum about p, as observed from an inertial

reference frame, of a species ι over Ωt requires,

4Which may or may not be the origin of the system’s Euclidean space.
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d

dt

(∫

Ωt

p × ριvι dv

)

︸ ︷︷ ︸
Rate of change of angular momentum

=

∫

Ωt

p × ρι (gι + qι) dv

︸ ︷︷ ︸
Moment from body forces

+

∫

∂Ωt

p × (σιn) da

︸ ︷︷ ︸
Moment from traction

+

∫

Ωt

p × πιvι dv

︸ ︷︷ ︸
Angular momentum being created

−

∫

∂Ωt

(p × ριvι) (vι − v) · n da,

︸ ︷︷ ︸
Angular momentum leaving the domain

(4.9)

since it is reasonable to assume that the material comprising the tissue is not a polar

material.5

On applying Reynolds’ Transport Theorem (Appendix A.2), Equation (4.9) re-

duces to,

∫

Ωt

∂

∂t
(p × ριvι) dv =

∫

Ωt

p × ρι (gι + qι) dv +

∫

∂Ωt

p × (σιn) da

+

∫

Ωt

p × πιvι dv −

∫

∂Ωt

(p × ριvι) vι · n da.

Using Gauss’ Divergence Theorem (Appendix A.1) and the product rule, we have

the following relations:

∫

∂Ωt

p × (σιn) da =

∫

Ωt

p × div (σι) dv +

∫

Ωt

ǫ : σιT dv,

where ǫ is the permutation symbol (introduced in Section 2.1.3),

∫

Ωt

∂

∂t
(p × ριvι) dv =

∫

Ωt

∂ρι

∂t
p × vι dv +

∫

Ωt

ριp ×
∂vι

∂t
dv, and

∫

∂Ωt

(p × ριvι) vι · n da =

∫

Ωt

p × vιdiv (ριvι) dv +

∫

Ωt

p × (grad (vι) ριvι) dv,

5Some materials, such as liquid crystals, become polarised under the presence of electric fields and
consequently have additional global torque contributions to their balance of momentum equations
(Truesdell and Noll, 1965).
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since ριvι × vι = 0. Substituting these relations above and invoking the balance of

mass (4.2) and the balance of linear momentum (4.6), we obtain on localisation that,

(4.10) ǫ : σιT = 0,

or the partial Cauchy stress tensor, σι, is symmetric. This classical result is the

pushed-forward form of the synonymous result derived earlier (Section 2.1.3) in terms

of the partial first Piola-Kirchhoff stress tensor.

When the balance of angular momentum of the entire system, deduced by ne-

glecting the interaction terms, is compared to the form of the equation obtained

by summation of the individual balance of angular momenta (4.9) over all species

present, one obtains a relationship between the interaction forces and interconversion

terms that is identical to Equation (4.8).

4.1.4 Balance of energy

Recall from Section 2.1.4 that the internal energy per unit mass of species ι is

denoted eι, the external heat supply to species ι per unit mass of that species is rι

and the interaction energy, ẽι, accounts for the energy transferred to ι by all other

species, also per unit mass of ι. We now denote the partial heat flux vector of ι

defined on Ωt as hι, and for notational simplicity, introduce the total energy of each

species ι per unit mass: Eι = eι + 1
2
‖vι‖2.

With these quantities defined, the rate of change of internal and kinetic energies

of species ι under the action of mechanical loads, processes of mass production and

transport, and heating and energy transfer, in Ωt, is,
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d

dt

(∫

Ωt

ριEι dv

)

︸ ︷︷ ︸
Rate of change of energy

=

∫

Ωt

ρι (gι + qι) · vι dv

︸ ︷︷ ︸
Work done by body forces

+

∫

∂Ωt

(σιn) · vι da

︸ ︷︷ ︸
Work done by boundary traction

+

∫

Ωt

πιEι dv

︸ ︷︷ ︸
Energy being created

−

∫

∂Ωt

(ριEι) (vι − v) · n da

︸ ︷︷ ︸
Energy lost due to mass flux

+

∫

Ωt

ρι (rι + ẽι) dv

︸ ︷︷ ︸
Energy supplied

−

∫

∂Ωt

hι · n da.

︸ ︷︷ ︸
Heat outflux

(4.11)

On applying Reynolds’ Transport Theorem (Appendix A.2) to the left hand-side

and Gauss’ Divergence Theorem (Appendix A.1) to the area integrals, we have,

∫

Ωt

∂ (ριEι)

∂t
dv =

∫

Ωt

ρι (gι + qι) · vι dv +

∫

Ωt

(div (σι) · vι + σι : grad (vι)) dv

+

∫

Ωt

πιEι dv −

∫

Ωt

div (Eιριvι) dv

+

∫

Ωt

ρι (rι + ẽι) dv −

∫

Ωt

div (hι) dv.

Upon further simplification with the product rule and the balance of mass (4.2), we

are left with:

∫

Ωt

ρι
∂Eι

∂t
dv =

∫

Ωt

ρι (gι + qι) · vι dv +

∫

Ωt

(div (σι) · vι + σι : grad (vι)) dv

−

∫

Ωt

ριvι · grad (Eι) dv

+

∫

Ωt

ρι (rι + ẽι) dv −

∫

Ωt

div (hι) dv.

We now expand the total energy of each species ι, Eι = eι + 1
2
‖vι‖2, and take its

spatial and temporal derivatives to give,
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∫

Ωt

ρι
(
∂eι

∂t
+ vι ·

∂vι

∂t

)
dv =

∫

Ωt

ρι (gι + qι) · vι dv

+

∫

Ωt

(div (σι) · vι + σι : grad (vι)) dv

−

∫

Ωt

ριvι ·
(
grad (eι) + grad(vι)Tvι

)
dv

+

∫

Ωt

ρι (rι + ẽι) dv −

∫

Ωt

div (hι) dv.

Finally, we apply the balance of linear momentum (4.6) to the equation above and,

upon localisation, arrive at:

(4.12) ρι
∂eι

∂t
= σι : grad (vι) + ρι (rι + ẽι) − div (hι) − ριvι · grad (eι) in Ωt,

the form of the balance of energy of a species ι in Ωt which is most convenient for

combining with the entropy inequality, leading to the Clausius-Duhem form of the

dissipation inequality (4.17) in the following section. This result is consistent with

classical mixture theory (Truesdell and Toupin, 1960) and is the current configuration

analogue of Equation (2.14).

In order to obtain a relationship between the momentum transfer, mass intercon-

version and inter-species energy transfer terms within the system, we first express

the rate of change of energy of the system interacting with its environment from the

point of view of an external observer unaware of these internal interactions, as:

∑

ι

d

dt

(∫

Ωt

ριEι dv

)
=
∑

ι

∫

Ωt

ριgi · vι dv +
∑

ι

∫

∂Ωt

(σιn) · vι da

−
∑

ι

∫

∂Ωt

(ριEι) (vι − v) · n da

+
∑

ι

∫

Ωt

ριrι dv −
∑

ι

∫

∂Ωt

hι · n da.

(4.13)
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Since the equation above, and a summation of Equation (4.11) over all ι are equivalent

statements of the balance of energy for the entire system, it follows upon inspection

and localisation that,

(4.14)
∑

ι

(ριqι · vι + πιEι + ριẽι) = 0,

which ensures that there is no net energy production mechanism internal to the

system.

4.2 Thermodynamically-consistent constitutive framework

In order to close the system of balance equations deduced in Sections 4.1.1–

4.1.4, and make thermodynamically-valid constitutive choices pertinent to biological

tissues, we turn to the principles of entropy growth and material frame-indifference.

The following treatment builds upon the same fundamental assumptions underlying

our system of interest as those stated in Section 2.3:

(i) The entropy production inequality is assumed to hold at a continuum point for

all species as a whole, but, in general, not for each individual species.6

(ii) All species occupying a continuum point in the tissue have the same absolute

temperature, θ.

Additionally, in the derivation of the Clausius-Duhem form of the Second Law of

Thermodynamics in Section 4.2.1 immediately below, we assume the viewpoint of

an observer external to the system unaware of any internal interactions.

6Enforcing the entropy inequality separately for each of the individual constituents of the mixture
imposes unrealistic constraints on the mixture (Bedford and Drumheller, 1983).
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4.2.1 The Clausius-Duhem form

With the assumptions introduced above, and denoting by ηι the entropy per unit

mass of species ι, the entropy inequality, when written out for the entire system in

Ωt reads,

∑

ι

d

dt

(∫

Ωt

ριηι dv

)

︸ ︷︷ ︸
Rate of change of entropy

≥
∑

ι

∫

Ωt

ριrι

θ
dv

︸ ︷︷ ︸
Entropy supplied

−
∑

ι

∫

∂Ωt

hι · n

θ
da.

︸ ︷︷ ︸
Entropy outflux

−
∑

ι

∫

∂Ωt

(ριηι) (vι − v) · n da.

︸ ︷︷ ︸
Entropy lost due to mass flux

(4.15)

On applying Reynolds’ Transport Theorem (Appendix A.2) to the left hand-side

and Gauss’ Divergence Theorem (Appendix A.1) to the area integrals, we have,

∑

ι

∫

Ωt

∂ (ριηι)

∂t
dv ≥

∑

ι

∫

Ωt

ριrι

θ
dv −

∑

ι

∫

Ωt

(
div (hι)

θ
−

hι · grad (θ)

θ2

)
dv

−
∑

ι

∫

Ωt

(ηι div (ριvι) + ριvι · grad (ηι)) dv.

Applying the product rule and the balance of mass (4.2),

∑

ι

∫

Ωt

(ρι
∂ηι

∂t
+

�
�

���
πιηι

ηι
∂ρι

∂t
) dv ≥

∑

ι

∫

Ωt

ριrι

θ
dv

−
∑

ι

∫

Ωt

(
div (hι)

θ
−

hι · grad (θ)

θ2

)
dv

−
∑

ι

∫

Ωt

((((((((
ηι div (ριvι) + ριvι · grad (ηι)) dv,

and rearranging terms and localising, we have the following form of the entropy

inequality for the entire system:
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∑

ι

(
ρι
∂ηι

∂t
+ πιηι

)
≥
∑

ι

(
ριrι

θ
− ριvι · grad (ηι)

)

−
∑

ι

(
div (hι)

θ
−

hι · grad (θ)

θ2

)
.

(4.16)

Now, multiplying Equation (4.16) by the temperature field, θ, and subtracting it

from a summation of the balance of energy (4.12) over all species ι, we obtain,

∑

ι

(
ριėι − ριη̇ιθ − πιηιθ

)
≤
∑

ι

(
σι : grad (vι) −

hι · grad (θ)

θ

)

+
∑

ι

(
ριẽι − ριvι · (grad (eι) − grad (ηι) θ)

)
,

where •̇ denotes the partial derivative with respect to time. Using Equation (4.14)

to eliminate the species interaction energy, ẽι, we deduce that

∑

ι

(
ριėι − ριη̇ιθ − πιηιθ

)
≤
∑

ι

(
σι : grad (vι) −

hι · grad (θ)

θ

)

−
∑

ι

ριvι · (grad (eι) − grad (ηι) θ)

−
∑

ι

(
ριqι · vι + πι

(
eι +

1

2
‖vι‖2

))
.

Introducing the Helmholtz free energy per unit mass of species ι, ψι = eι − θηι,

and regrouping terms, the relation above reduces to,

∑

ι

(
ριėι − ριη̇ιθ − σι : grad (vι) +

hι · grad (θ)

θ

)

+
∑

ι

(
ρι(qι + grad (eι) − grad (ηι) θ) · vι + πι

(
ψι +

1

2
‖vι‖2

))
≤ 0.

(4.17)

the Clausius-Duhem (or reduced dissipation) inequality for the growth process; a rule

which any prescribed constitutive relationship must satisfy (Truesdell and Toupin,

1960).



83

The form of the Clausius-Duhem inequality arrived at in (4.17) is equivalent to

the forms in recent work on mixture theory-based models for biological growth (Loret

and Simões, 2005; Ateshian, 2007). However, subsequently varying choices made in

the different works, including this one, for the constitutive independent variables

result in altered constitutive specification. I believe it is significant, and must be

emphasised at this point that not only do the constitutive choices detailed in the

following sections ensure that the Clausius-Duhem inequality is satisfied a priori,

but also that they are general enough to handle a fairly large class of physics, and

most significantly, have been implemented in a coupled formulation retaining much

of their rich detail, as evidenced by the computational examples in Chapter 5.

4.2.2 Duhamel’s law of heat conduction

A suitable constitutive relation motivated by experiment which relates the Cauchy

heat flux vector hι(x, t) to the spatial temperature gradient grad (θ) (x, t) is the

classical heat conduction law of Duhamel:

(4.18) hι = −κι grad (θ) , ∀ ι,

where κι(x, t), the spatial thermal conductivity tensor, is positive semi-definite. The

relation above states that heat flows down a temperature gradient, and using it

ensures that the following portion of the Clausius-Duhem inequality (4.17),

∑

ι

(
hι · grad (θ)

θ

)
≤ 0,

is satisfied since the heat conduction law (4.18) is valid for all species in the mixture.

In fact, the constitutive form (4.18) specified above was motivated directly by

virtue of it being sufficient to ensure that the corresponding portion of the Clausius-
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Duhem inequality had the appropriate sign. Another approach that can be followed

to arrive at Duhamel’s law (and, similarly, the constitutive relations that follow)

is to first define a general set of independent variables upon which the various field

variables can depend (such as in Truesdell and Toupin (1960)). One then proceeds to

consider a scenario where the functional forms of some of the terms in the dissipation

inequality are fixed, and examine the implications of entropy production on the

remaining terms, assuming they can be varied independently.

In practice, the two approaches outlined above are mathematically equivalent,

and the former is employed in the following treatment.

While Duhamel’s law (4.18) is indeed useful in a general setting, our primary

interest lies in specialising concepts from classical thermodynamics to biological sys-

tems, where the temperature field under most physiological scenarios is relatively

uniform and constant in time. In what follows, we will restrict our attention to this

case. Additionally, the general nature of the analysis thus far has resulted in it being

presented in terms of an arbitrary species ι. Recall, from Section 2.1, that the vari-

ous species constituting the tissue are grouped into a solid species, consisting of solid

collagen fibrils and cells, denoted by c, an extra-cellular fluid species, denoted by f,

consisting primarily of water, and solute species, consisting of precursors to reactions,

byproducts, nutrients, and other regulatory chemicals, denoted by s. We now return

to this earlier classification, and motivated by specific portions of (4.17), proceed

to prescribe constitutive relations pertinent to the mechanics and biochemistry of

growing biological tissue for each of these species groups.

4.2.3 Energy-dependent mass source terms

We first focus on the following term of the Clausius-Duhem form (4.17),
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∑

ι=c,f,s

πι
(
ψι +

1

2
‖vι‖2

)
≤ 0.

Recall that the extra-cellular fluid species, f, consists primarily of water and does

not take part in reactions, i.e., πf = 0. Therefore, from the summation relation for

mass sources and sinks (4.4), we have that πs = −πc. Using this fact, the inequality

above reads,

πc

(
ψc +

1

2
‖vc‖2

)
+ (−πc)

(
ψs +

1

2
‖vs‖2

)
≤ 0.

The above relation provides a broad guideline that allows for the specification of a

very general class of source terms for collagen. An obvious form that it suggests is

linear in terms of the energy (Helmholtz free energy plus the kinetic energy) difference

between the collagen phase and the solute phase:

(4.19) πc = −κc

(
ψc +

1

2
‖vc‖2 − ψs −

1

2
‖vs‖2

)
,

where κc is a non-negative rate constant.

Thus, the thermodynamics suggests that it is an energetic difference between the

reactants and products of a chemical reaction that drive the reaction forward; a

well-established concept in chemistry. More interestingly, since all that the thermo-

dynamics requires is that the source term for collagen be positive (negative) when

the solute is more (less) energetic than collagen, this opens up the selection to a

variety of forms, such as the nonlinear (in terms of the energy difference) example

shown below,

(4.20) πc = ǫ κc

(
exp

[
−ǫ U

(
ψc +

1

2
‖vc‖2 − ψs −

1

2
‖vs‖2

)]
− 1

)
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Figure 4.2: A thermodynamically-motivated collagen source.

(where ǫ = sign
(
ψc + 1

2
‖vc‖2 − ψs − 1

2
‖vs‖2

)
, U > 0 and κc ≥ 0), and can be

tailored to represent different sorts of biochemistry. The evolution of this nonlinear

collagen source term with the energy difference between the collagen and solute

phases is shown in Figure 4.2; which clearly shows the source for collagen having a

sign opposite to that of the energy difference between collagen and the solute.

With the introduction of an energy-dependent mass source (such as (4.19) or

(4.20)), and drawing upon the assumption that the temperature field is uniform and

constant7 during the course of a biological experiment, a portion of the Clausius-

Duhem form (4.17) is satisfied a priori. The remainder now reads:

(4.21)
∑

ι=c,f,s

(
ριψ̇ι − σι : grad (vι) + ρι(qι + grad (ψι)) · vι

)
≤ 0.

In the treatment that follows, recognising that the fluid, solid and solute are fun-

7Which allows one to write ėι − η̇ιθ = ψ̇ι and grad (eι) − grad (ηι) θ = grad (ψι).
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damentally different substances, we turn to the specification of different constitutive

independent variables most suited to each of them in deriving relevant constitutive

relationships. Since our primary interest lies in the mechanics response of soft col-

lagenous tissues, we will be paying particular attention to the constitutive forms of

the solid collagen and fluid stress tensors, as well as the interaction forces between

the collagen and fluid phases.

It is well established that collagenous tissues demonstrate a rate-dependent re-

sponse to applied loads (see, for e.g., Provenzano et al. (2001)). This behaviour

may be attributed to the viscoelastic deformation of the collagen network (which is

the focus of Section 4.2.4), the viscosity of the extra-cellular fluid (as seen in Sec-

tion 4.2.6), frictional effects arising from stress-driven fluid flow through the network

(as discussed in Section 4.2.7), or combinations thereof. In order to be able to model

each of these cases, the following sections derive the relevant constitutive relations

entirely from thermodynamic considerations.

4.2.4 A viscoelastic solid

For the terms arising from the solid collagen phase, the reduced dissipation in-

equality (4.21) requires that,

ρcψ̇c − σc : grad (vc) + ρcgrad (ψc) · vc + ρcqc · vc ≤ 0.

We will return to the last term, ρcqc · vc when discussing interaction forces between

the solid and fluid phases in Section (4.2.7). Currently, we turn our attention to the

remaining terms in the inequality above:

(4.22) ρcψ̇c − σc : grad (vc) + ρcgrad (ψc) · vc ≤ 0.
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Looking ahead to the numerical examples presented in Chapter 5, and noting that

they solve the momentum balance equation (2.7) for the solid phase in the reference

configuration,8 we deduce the constitutive response of the solid phase in terms of its

partial first and second Piola-Kirchhoff stress tensors, P c and Sc, respectively.

From the balance of angular momentum for the solid (4.10), we know that its par-

tial Cauchy stress is symmetric and thus, σc : grad (vc) = σc : (Ḟ F−1) = 1
J
P c : Ḟ .

Substituting this in (4.22) above, recalling that ρc J = ρc
0 and ρcψ̇c + ρcgrad (ψc) ·vc

provides the material time derivative of ψc, we have,

ρc
0ψ̇

c − P c : Ḟ ≤ 0, in Ω0.

Introducing the elasto-growth kinematic split F = F eF g discussed in Section 2.2

for the solid phase, c, and applying the properties of the contraction operation, the

above inequality reads,

ρc
0ψ̇

c − P cF gT

: Ḟ e − F eTP c : Ḟ g ≤ 0.

The term −F eTP c : Ḟ g is the focus of the following section on stress-dependent

growth deformation gradients (4.2.5). Currently, we consider only the following two

terms,

(4.23) ρc
0ψ̇

c − P cF gT

: Ḟ e ≤ 0.

As in Section 2.3.1, if we were to assume at this point that the Helmholtz free

energy of the solid had the form, ψc = 1
ρ̃c0
ψ̂c(F e), where ρ̃c

0 is the intrinsic density

8It is instructive to note here that since Ωt is constructed to coincide with the current position
of the solid component of the tissue (see Section 4.1), we are aware of the deformation gradient

F c = F =
∂ϕ

t

∂X
of this phase. This allows us to consistently pose the balance laws in either

configuration.
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of the solid collagen in the reference configuration, i.e., the free energy depends only

upon the elastic portion of the deformation gradient, then a sufficient condition to

satisfy the inequality above is to assume a hyperelastic model of the form:

(4.24) P c =
ρc

0

ρ̃c
0

∂ψ̂c

∂F eF
g−T

.

We have already seen one specific form of this model used in the computations in

Section 2.3.1.

However, we are currently interested in allowing for an inelastic response in the

solid, and for this, we turn to a body of established work on continuum formula-

tions for viscoelastic materials undergoing finite strains (see, for e.g., Simo (1987),

Holzapfel (1996), and Simo and Hughes (1998)). The treatment below follows in the

same vein.

We begin by assuming a Helmholtz free energy for the solid collagen of the form:

ψc = 1
ρ̃c0
ψ̂c(Ce,Γ1, . . . ,Γm), where Ce = F eTF e is the elastic right Cauchy-Green

tensor and Γ1, . . . ,Γm are a set of second order tensorial internal history variables.

Substituting this form into (4.23), and rewriting the partial first Piola-Kirchhoff

stress tensor in terms of the partial second Piola-Kirchhoff stress tensor using the

relation P c = FSc, we have,9

(4.25)
ρc

0

ρ̃c
0

∂ψ̂c

∂Ce : (2F eTḞ e) +
m∑

α=1

ρc
0

ρ̃c
0

∂ψ̂c

∂Γα

: Γ̇α − (F eF g)ScF gT

: Ḟ e ≤ 0.

A sufficient condition to satisfy (4.25) is to specify that the partial second Piola-

Kirchhoff stress tensor has the form,

9The computations presented in Chapter 5 use the second partial Piola-Kirchhoff stress ten-
sor, Sc, since it is a symmetric quantity, and thus requires less memory for storage.
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(4.26) Sc = F g−1 ρc
0

ρ̃c
0

2
∂ψ̂c

∂Ce F
g−T

,

and provide a suitable evolution equation for the internal variables, Γα. Motivated by

the fact that some compressible materials exhibit dissimilar bulk and shear response,

we proceed to decompose the free energy function into volumetric and isochoric parts:

(4.27) ψ̂c(Ce,Γ1, . . . ,Γm) = Wvol(J
e) + Wiso(C̄

e) +
m∑

α=1

γα(C̄
e,Γα),

where Je is the determinant of the elastic portion of the deformation gradient tensor

and C̄e = Je−2/3

Ce. The first two terms in the decomposition above characterise

the volumetric and isochoric equilibrium response of the solid phase, and the last

term is the dissipative potential which contributes to the viscoelastic response. The

equilibrium response (that of a purely-elastic material) is recovered during infinitely

slow processes.

Using the decomposition (4.27) in the stress constitutive relation (4.26), we see

that the solid stress takes the form,

(4.28) Sc = F g−1 ρc
0

ρ̃c
0

(
Sc

vol + Sc
iso +

m∑

α=1

Qα

)
F g−T

,

where, denoting by I the fourth order unit tensor,

Sc
vol = Je∂Wvol(J

e)

∂Je
and Sc

iso = Je−2/3

(
I −

1

3
C−1 ⊗ C

)
: 2
∂Wiso(C̄

e)

∂C̄e .

Equation (4.28), along with the following evolution equations for the non-equilibrium

stresses, Qα,
10 in agreement with the dissipation inequality motivated by a gener-

alised Maxwell model,
10Which are work-conjugate variables to Γα.
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(4.29) Q̇α +
Qα

τα
= Ṡ

c

isoα
, α = 1, . . . ,m,

where each τα is a characteristic relaxation time and Sc
isoα

= βα Sc
iso(C̄

e), where βα

is a non-negative strain-energy factor associated with τα, completes the specification

of a linear viscoelastic solid. This can be extended in a straightforward manner to

a nonlinear model by introducing the notion of a modified relaxation time (Eyring,

1936).

4.2.5 Effects of the stress state on tissue growth

One important influence that the local stress state has on tissue growth directly

relates to its regulation of species production (and consumption) rates. An example

of this fact lies in oft-cited work of Wolff (1892) who found that bone is deposited

and resorbed in accordance with the stresses placed upon it. In this formulation, this

effect is modelled through the use of the strain-energy dependent source terms (2.39)

introduced in Section 2.3.7.

There is experimental evidence to suggest that there is another important influ-

ence of the stress state on the development of tissues, relating to the spatial alignment

of deposited matter. An example of this is found in Provenzano et al. (2003), where

it is observed that during wound healing, newly-deposited collagen fibres are found to

align with the applied stress, whereas under unstressed conditions, they are deposited

isotropically. Momentarily, will see that the thermodynamics naturally motivates a

form for the rate of change of the growth deformation gradient tensor that reflects

this observation.

During the derivation of the constitutive relationship for the solid stress in the

preceding section, the implication of the following inequality,
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−F eTP c : Ḟ g ≤ 0,

had not been explored. Turning our attention to it now, it is clear that a sufficient

condition to satisfy this inequality is,

(4.30) Ḟ g = λ F eTP c,

where λ is a non-negative scalar.

Equation (4.30) specifies that incremental changes in the growth deformation

gradient in time have to be aligned along the partial first Piola-Kirchhoff stress

tensor, suitably transformed by the elastic portion of the deformation gradient.

The treatment presented in Sections 4.2.4 and 4.2.5 involve the notion of defor-

mation gradients and are thus only applicable to the solid collagen phase for reasons

discussed. In contrast, the analyses for the fluid and solute phases below are car-

ried out in Ωt, and we work with their respective velocities as primitive variables

characterising their motion.

4.2.6 A Newtonian fluid

As alluded to toward the end of Section 4.2.3, one of the mechanisms underlying

the rate-dependent behaviour of soft collagenous tissues is the inherent viscosity of

the extra-cellular fluid. In this section, we derive the constitutive relationship for a

Newtonian (viscous) fluid from thermodynamic considerations.

For the terms arising from the fluid phase, the reduced dissipation inequality

(4.21) requires that,

ρfψ̇f − σf : grad
(
vf
)

+ ρfgrad
(
ψf
)
· vf + ρfqf · vf ≤ 0.
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We will return to the last term, ρfqf ·vf , when considering interaction forces between

the solid and fluid phases in Section (4.2.7). Now, we turn our attention to the

remaining portion of the dissipation inequality for the fluid:

(4.31) ρfψ̇f − σf : grad
(
vf
)

+ ρfgrad
(
ψf
)
· vf ≤ 0.

Assuming that the Helmholtz free energy of the fluid depends only on its current

concentration, i.e, ψf = 1

ρ̃f
ψ̂f(ρf), where ρ̃f is the intrinsic density of the fluid, and

substituting this form into (4.31), we have,

ρf

ρ̃f

∂ψ̂f

∂ρf
ρ̇f − σf : grad

(
vf
)

+
ρf

ρ̃f

∂ψ̂f

∂ρf
grad

(
ρf
)
· vf ≤ 0.

Invoking the balance of mass (4.2) for the fluid, with πf = 0, we obtain,

ρf

ρ̃f

∂ψ̂f

∂ρf

(
−ρfdiv

(
vf
))

− σf : grad
(
vf
)
≤ 0.

Finally, recalling the definition of pressure in terms of the Helmholtz free energy at

fixed temperature from classical thermodynamics, we have the following form of the

reduced dissipation inequality for the fluid,

(
−

�
�

�
�

��>
pf(ρf)

(ρf)2

ρ̃f

∂ψ̂f

∂ρf
1 − σf

)
: grad

(
vf
)
≤ 0,

since div(•) = 1 : grad(•), where 1 is the second order identity tensor.

A suitable form for the partial Cauchy stress tensor of the fluid phase motivated

by the above inequality is: σf = −pf1 + 2µfgrad
(
vf
)
, where µf , the viscosity of

the fluid, is a non-negative scalar. Setting it to zero results in the case of an ideal

fluid. Furthermore, recognising from the balance of angular momentum that σf is
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symmetric, we rewrite the above constitutive relationship in terms of the fluid rate

of deformation tensor, df :

(4.32) σf = −pf1 + 2µfdf ,

which defines the behaviour of a classical Newtonian fluid.

4.2.7 Frictional interaction forces

We now focus our attention on the following two terms that were left unaccounted

for when exploring the implications of the terms arising from the solid and fluid

phases in the reduced dissipation inequality (4.21) in Sections 4.2.4 and 4.2.6:

(4.33) ρcqc · vc + ρfqf · vf ≤ 0.

In the time-scales of experiments studying the mechanical response of tissues,

growth is not usually significant, i.e. πc = πf = 0. Applying this simplification to

the summation relationship between the interaction forces (4.8), we see that,

(4.34) ρcqc = −ρfqf .

Substituting Equation (4.34) in (4.33), we obtain,

(4.35) ρcqc ·
(
vc − vf

)
≤ 0.

Relationships (4.34) and (4.35) indicate that a suitable form for the interaction

forces between the solid collagen and fluid phases are:
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(4.36) ρcqc = −ρfqf = −Dfc
(
vc − vf

)
,

where Dfc is a positive semi-definite frictional coefficient tensor.11 This frictional in-

teraction between the phases is the basis for the time-dependent mechanical response

observed in the biphasic computations presented in Section 5.3.

4.2.8 Diffusive solute fluxes

Since the solute species are present only in low concentrations in solution, they are

not capable of exerting significant forces upon other phases, and do not bear appre-

ciable stress. Consequently, for the solutes, the reduced dissipation inequality (4.21)

requires only that,

∑(
ρsψ̇s + ρsgrad (ψs) · vs

)
≤ 0,

where the summation above is carried out over all solute species. A sufficient condi-

tion to satisfy the above inequality is to specify the following form for the mass flux

of each species s,

(4.37) ρsvs = −Dsgrad (ψs)

and only allow for solute interactions which decrease their overall free energy density.

Here, Ds is a positive semi-definite mobility, and Equation (4.37) results in classical

diffusive flux of the solute species when their Helmholtz free energies are purely

functions of their concentrations.

11This is only the simplest form possible. See Massoudi (2003) for a thorough review of various
thermodynamically and phenomenologically motivated forms for this interaction force.



CHAPTER 5

Representative numerical simulations – II

The theoretical framework developed in the preceding chapter resulted in a set

of coupled partial differential equations governing the interrelated mechanics, mass

transport and biochemistry pertinent to biological tissue growth. In order to demon-

strate the applicability of the theory, this chapter presents the results of several illus-

trative numerical experiments posed within a corresponding computational frame-

work retaining all aspects of the coupling between the equations.

The chapter begins by providing some insight into the numerical methods used

to solve the coupled equations in Section 5.1. The first set of examples, presented

in Section 5.2, serve to illustrate basic aspects of the coupled physics underlying

biphasic models for tissue mechanics. In Section 5.3, the biphasic model parameters

are tailored to be more representative of experimental studies on the mechanics of

engineered ligaments, and aspects of the time- and rate-dependent behaviour of the

model are explored. The final example presented in this chapter provides a straight-

forward extension of the theory to model the effects of the mechanical environment

on growing tumours (Section 5.4), evidencing the generality of the proposed formu-

lation.

96
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5.1 Introducing the computational model

The mathematical formulation developed in Chapter 4 has been implemented

in a finite element setting using COMSOL Multiphysics,1 a computational environ-

ment for solving coupled systems of partial differential equations. For simplicity,

the numerical implementation is in two spatial dimensions assuming a state of plane

strain, and it uses triangular elements of order 2 (quadratic elements) to approxi-

mate the displacement field of the solid phase, and triangular elements of order 1

(linear elements) to approximate all other field variables, including the fluid velocity

and concentration. A representative unstructured mesh, used in the computations

on a unit square domain in Section 5.2, is shown in Figure 5.1 and consists of 3267

elements.
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Figure 5.1: A representative finite element mesh used in the computations.

In the numerical implementation presented in Chapter 3, a simplified form of the

1http://www.comsol.com/

http://www.comsol.com/
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balance of momentum was imposed by treating the tissue as a whole and solving a

summation of Equation (2.7) over all species. This simplification necessitated ad-

ditional assumptions on the underlying micro-mechanics, and these were discussed

in Section 3.3.1. In contrast, the implementation used in this chapter solves the

detailed momentum balance equations; enforcing the balance of momentum for each

species separately. The coupling between the mechanics equations of the individ-

ual species is introduced by specifying momentum transfer terms, qι, arising from

frictional interaction as discussed in Section 4.2.7.

The balance of mass (2.2) and momentum (2.7) equations for the solid colla-

gen are solved in the reference configuration of the tissue, Ω0, and the balance of

mass (4.2) and momentum (4.6) equations for the fluid phase are solved in the current

configuration, Ωt. Recall that this choice is justified because we know the reference

configuration of the solid phase of the tissue. These equations, along with the sat-

uration constraint discussed below, are solved simultaneously for the for the solid

concentration, ρc
0, and displacement, uc; and the fluid concentration, ρf , velocity, vf ,

and pressure, pf . Variable-order backward difference formulae (LeVeque, 2007) are

used for forwarding the equations through time.

In the interest of generality, the formulation and corresponding implementation

presented in Chapters 2 and 3 allowed for the possibility of cavitation in tissues

under certain ex vivo/in vitro conditions. However, since it is well established that

under normal physiological conditions soft tissues are fully saturated by the fluid,

this condition will be imposed in the following calculations.

The concentration of each species ι can be expressed as the product of two non-

negative scalar fields: ρι = φιρ̃ι, where φι is the volume fraction and ρ̃ι is the

intrinsic density of species ι in Ωt. The mixture is said to be saturated if the total
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volume fraction, φ =
∑
ι

φι = 1 (Passman et al., 1984). Since the solute species are

present only in very low concentrations, the preceding condition can be suitably

approximated by:2

(5.1)
(ρc

0/J)

ρ̃c
+
ρf

ρ̃f
= 1.

In this computational implementation, the fluid pressure, pf , is not constitutively

specified in terms of the current concentration of the fluid, and instead serves as a

Lagrange multiplier to impose the saturation constraint (5.1).

For simplicity, in the calculations that follow, the strain energy function used for

the elastic portion of the response of the solid collagen is the model of Mooney and

Rivlin (Mooney, 1940):

(5.2) ψ̂c(Ce) =
n∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j

(where I1 and I2 are the first and second principal invariants of the elastic right

Cauchy-Green tensor, Ce), suitably decomposed into volumetric and isochoric parts.

A mixed displacement-pressure (Zienkiewicz and Taylor, 1989) formulation is used

to treat the near-incompressibility of the solid phase. Also for simplicity, the fluid is

assumed to be ideal, i.e. the fluid viscosity, µf = 0 Pa.s.

5.2 Some simple physical tests

The preliminary calculations presented in this section aim to illustrate basic as-

pects of the coupled physics that arise in mixture models that include only two

2The saturation condition, as stated in Equation (5.1), incorporates an implicit assumption that
the solid and fluid phases of the tissue are individually intrinsically incompressible. This means that
their intrinsic densities, ρ̃ι, do not change under load, and this is a common assumption employed
in the soft tissue mechanics literature. (See, for e.g., Mow et al. (1980) and Ateshian (2007).)
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non-reacting phases: a solid and a fluid. In these calculations, the tissue is assumed

to be 1 mm thick and the material model for the solid phase uses the Mooney-Rivlin

strain energy function (5.2) with just one term (i.e., it is neo-Hookean) having the

material constant C10 = 0.8 MPa.

5.2.1 An inflating balloon

This example studies the inflation of the tissue as a result of pressure-gradient

driven influx of fluid. The total duration of the test is 3 s. The initial concen-

trations of the solid collagen and fluid phases at all points in a unit square domain

(1 mm × 1 mm) are 500 kg.m−3, and their intrinsic densities are 1000 kg.m−3. Thus,

each phase has an initial volume fraction of 0.5. At the initial time, the solid dis-

placement and velocity fields, and the fluid velocity and pressure fields are each 0 in

their respective units at all points in the domain.

In this example, the frictional coefficient tensor, Dfc = 1e−5 1 MPa.s.mm−2, is as-

sumed to have a relatively small magnitude because we are currently more interested

in observing the swelling of the domain due to fluid influx rather than the frictional

interaction between the phases.

The boundary conditions for this problem correspond to holding the bottom edge

of the tissue fixed to prevent rigid body motion, and forcing inflow of the fluid at

this bottom edge while disallowing outflow at any of the other edges, simulating an

inflating balloon. In particular:

• For the fluid, the boundary condition on the bottom edge specifies that its

pressure increases linearly in time from 0 MPa to 0.3 MPa during the duration of

this test. The boundary condition for the fluid on the other three edges specifies

that its velocity field is the same as that of the solid, vf = vc, disallowing outflow
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of fluid.

• For the solid, the boundary condition on the bottom edge fixes the components

of the solid displacement to 0 mm for the entire duration of the test. On

the other three edges, following literature on fluid-structure interaction (Donea

et al., 2004), there is a traction boundary condition on the solid that reads,

tc = σcn = −pfn, suitably pulled-back to the reference configuration. Here,

n is the normal to Ωt, and this condition relates the stress in the solid to the

pressure in the fluid along the edges where there is no relative motion between

the solid and the fluid.3

The above boundary condition—relating the stresses in the solid and fluid phases

at the free surfaces of the tissue—is a statement that supplements the condition that

there is the no relative velocity between the phases along these surfaces. Providing

just the velocity condition is insufficient, as the set of solid displacement fields which

can satisfy the no relative velocity condition is infinite.

While the use of this stress-equilibration condition is common in the ALE liter-

ature for interactions between a fluid and a rigid body (see, for e.g., Nomura and

Hughes (1992) and Sarrate et al. (2001)), I am not aware of its use in the context of

biomechanics. The use of biphasic models in biomechanics literature tends to focus

on cases where the mechanics of the problem is driven by displacement (or stress)

boundary conditions imposed on the solid phase of the tissue (such as Spilker and

Suh (1990) and DiSilvestro et al. (2001)). Unlike the current example, where the

mechanics of the problem is driven by an inflow of fluid, these cases do not require

3In contrast to the swelling example discussed in Section 3.3.2, which used the notion of the

growth portion of the deformation gradient of the fluid, F gf

, to cause kinematic swelling of the
domain with an increase in fluid concentration, in this example, it is primarily this interaction
between the solid and fluid stresses on the boundary that causes the domain to swell.
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additional boundary conditions such as the one above.

Figures 5.2–5.7 show snapshots of the swelling domain during the course of the

test. The colour contours provide the horizontal displacement field of the solid

(in mm) and the arrows provide the direction of the solid velocity field. The pres-

sure gradient induced by the increasing fluid pressure boundary condition on the

bottom edge causes an inflow of fluid. The inability of the fluid to flow out of other

boundaries manifests itself as an outward boundary traction on the solid, causing

the domain to swell as seen in the figures. Because the computation was run with

dynamics, there is initially a small oscillation in the fluid and solid velocity fields

due to wave propagation in the fluid (not apparent in the plots) which fade in the

first 0.4 s.
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Figure 5.2: The inflating balloon at time t = 0 s.

Figure 5.3: The inflating balloon at time t = 0.6 s.
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Figure 5.4: The inflating balloon at time t = 1.2 s.

Figure 5.5: The inflating balloon at time t = 1.8 s.
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Figure 5.6: The inflating balloon at time t = 2.4 s.

Figure 5.7: The inflating balloon at time t = 3.0 s.
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5.2.2 The tissue under constriction

In the previous numerical experiment, we studied the deformation of the tissue

under an influx of fluid. In this example, we turn our attention to fluid flow fields

induced by the deformation of the solid phase and frictional interactions between the

phases. The initial condition for this problem is identical to the previous case, i.e.,

the tissue is at rest initially and the initial concentrations of the solid collagen and

fluid phases at all points in the unit square domain (1 mm × 1 mm) are 500 kg.m−3.

As before, the total duration of the test is 3 s.
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Figure 5.8: The displacement condition on the vertical edges of the tissue.

The boundary conditions for this problem correspond to immersing the tissue in

a bath and applying a displacement load on the vertical edges so as to constrict the

tissue in order to observe the resulting fluid flow. In particular, the fluid is subjected

to a pressure boundary condition on all four edges; where the pressure of the fluid is

equated to that of the bath, 0 MPa. For the solid, the bottom edge is held fixed and
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the top edge is traction free. The left edge is subjected to the temporally-varying

constrictive horizontal displacement (in mm) visualised in Figure 5.8. The figure

shows the horizontal displacement being increased linearly in time for the first 1 s

and then held fixed for the remainder of the test. The right edge is subjected to

the negative of this load. In this example, the magnitude of the frictional coefficient

tensor, Dfc = 1 MPa.s.mm−2, is significantly greater than in the previous case, and

the effects of the frictional interaction between the phases are manifest in the results.

Figures 5.9–5.14 show snapshots of the constricted tissue during the course of

the test. The colour contours provide the horizontal displacement field of the solid

(in mm) which remains fixed after the first 1 s of the test. The arrows provide

the direction and magnitude of the fluid velocity field. Their lengths scale linearly

with the magnitude of the fluid velocity field and the longest arrow corresponds

to a fluid velocity magnitude of 7.03e-3 mm.s−1. This fluid flow is mainly driven

by a combination of frictional interaction with the solid phase and the saturation

condition. The plots are asymmetrical in the vertical direction because the bottom

edge is held fixed. Observe that the fluid velocity grows with increasing constriction

of the solid for the first 1 s and gradually decays after the solid phase is held fixed

(this is clearly seen in seen in Figure 5.15). There is also a nominal relaxation of the

top edge after the constriction phase, as observed in the example in Section 3.3.1.

As in the previous example, effects from the dynamics were observed in this case as

well, and an equivalent quasistatic calculation was performed for comparison. When

the vertical fluid velocity is tracked at the centre of the top edge for the duration of

the test in both these cases, it is observed that the dynamic case decays gradually and

has oscillations (Figure 5.15) while the quasistatic case reaches a higher magnitude,

and decays nearly instantaneously without manifesting oscillations (Figure 5.16).
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Figure 5.9: The constricted tissue at time t = 0 s.

Figure 5.10: The constricted tissue at time t = 0.32 s.
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Figure 5.11: The constricted tissue at time t = 0.66 s.

Figure 5.12: The constricted tissue at time t = 1.0 s.
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Figure 5.13: The constricted tissue at time t = 2.0 s.

Figure 5.14: The constricted tissue at time t = 3.0 s.
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Figure 5.15: Dynamic evolution of the vertical fluid velocity.
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Figure 5.16: Quasistatic evolution of the vertical fluid velocity.



112

5.3 Examples exploring the biphasic nature of porous soft tissues

The introductory examples presented in the preceding section illustrated basic

aspects of the coupled physics exhibited by non-reacting two-phase mixtures. The

computational formulation thus provides a means for determining the evolution of

fluid flow fields under varying physically-relevant boundary conditions, and allows

us to study their effects on the mechanics of tissues. With this established, we now

turn our attention to a more realistic application—studying aspects of the time- and

rate-dependent behaviour of ligaments.

In the following examples, the material parameters and model geometry are tai-

lored to more closely represent experimental studies on the mechanics of engineered

ligaments (Ma, 2007). The examples focus on the viscoelastic behaviour of these tis-

sues arising primarily from frictional interaction between two purely elastic phases:

an ideal fluid perfusing a porous, hyperelastic solid (as in the preceding section). In

particular cases, this poroelastic response is compared to analogous results obtained

using a single-phase linear viscoelastic solid model (discussed in Section 4.2.4).

Motivated by the experimental work, the model geometry is initially 12 mm in

length and 1.128 mm in width, and has a uniform thickness of 1.128 mm. The initial

concentration of the solid collagen is 300 kg.m−3 and the initial fluid concentration is

700 kg.m−3 at all points in the domain. The intrinsic densities of the solid collagen

and fluid phases are both 1000 kg.m−3, as before. The hyperelastic model for the

solid phase uses the Mooney-Rivlin strain energy function (5.2) with 9 terms, and the

values of the corresponding parameters used in the analysis are reported in Table 5.1.

The initial solid and fluid concentrations, and the Mooney-Rivlin parameters

chosen, approximate the collagen content and the tensile response of the explanted
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Parameter Value (GPa)

C10 0
C01 0
C20 0.54434
C11 0
C02 0.54714
C30 1.83688
C21 1.19985
C12 10.6863
C03 38.3875

Table 5.1: Material parameters used in the analysis.

ligament4 whose mechanical response under repeated cyclic loading is shown in Fig-

ure 5.17. In particular, the hyperelastic material parameters are chosen to approx-

imate the stress-strain response corresponding to the first load excursion (denoted

by the blue points).

Figure 5.17: Mechanical response of an explanted ligament (Ma, 2007).

The basal magnitude of the frictional coefficient tensor used in following calcu-

lations is fit to the experimental work of Swartz et al. (1999) on fluid transport

4This tissue is from a batch of engineered ligaments explanted after implantation for one month
as medial collateral ligament replacements in live rats (Ma, 2007).
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through mouse tails. This was achieved by subjecting the computational model to

a fluid pressure gradient identical to that in their experiment, and the frictional

coefficient tensor magnitude was modified until the until the steady-state flow ve-

locity in the computations matched those reported in the experiment. The resulting

frictional coefficient tensor is: Dfc = 1.037 1 MPa.s.mm−2. In what follows, this

isotropic tensor will be characterised by its scalar magnitude, D.

5.3.1 Stress relaxation

In these tests, the boundary conditions correspond to gripping the tissue at its

longitudinal ends, loading it at a constant strain rate to a specific strain, and holding

the tissue fixed at that strain for the remainder of the test. For the solid phase, this

translates to holding one of the longitudinal edges fixed while subjecting the other

to the suitable displacement load. The lateral edges of the solid remain traction free.

For the fluid, there is no flow relative to the solid at the longitudinal edges, i.e.,

vf = vc. Since we are simulating the tissue being held by grips at the longitudinal

edges, this boundary condition ensures that there is no outflow or inflow along those

edges. The lateral edges expose the fluid to the bath, and therefore the fluid pressure

is equated to that of the bath, 0 MPa, along those edges.

Figure 5.18 shows the stress relaxation in a quasistatic calculation5 where the

tissue is loaded at a strain rate of ǫ̇ = 0.01 Hz to a maximum strain of 0.085 in 8.5 s,

and then held fixed at that strain for the remainder of the test. A large portion of

the tensile response is furnished by the hyperelastic solid collagen, and the decaying

peak in the stress is due to the decaying relative velocity between the two phases.

5Since the displacement condition applied to the solid is not smooth in time, the corresponding
velocity boundary condition on the fluid is discontinuous in time. Consequently, the poroelastic
calculations presented in this section assume that the process is quasistatic; only requiring that the
velocity fields be integrable in time.
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Notice that this peak in stress decays rapidly, corresponding to the rapidly decaying

velocity field in the quasistatic result shown in Figure 5.16.

In order to study the effects of the load rate on the mechanical response, the next

test doubles the strain rate to ǫ̇ = 0.02 Hz. The tissue is subjected to the same

maximum strain of 0.085, now in 4.25 s, and is held fixed for the remainder of the

test. The stress relaxation resulting from this test is shown in Figure 5.19. The initial

peak stress is now increased; an observation which is in agreement with classical

results in viscoelasticity theory. This is because the increased strain rate results

in an increased relative velocity between the phases initially, which correspondingly

increases the frictional interaction between the phases.

Finally, the biphasic poroelastic response is compared to the response of a model

comprising of only one phase: linear viscoelastic solid collagen. In this computation,

the elastic portion of the response of the solid collagen has the same form (5.2)

and material properties (Table 5.1) as the poroelastic case, and has a characteristic

relaxation time, τ = 0.3 s, and strain-energy factor, β = 0.5.6 This test is carried

out at a strain rate of ǫ̇ = 0.02 Hz for 4.25 s, at which point the tissue is held fixed.

Figure 5.20 shows the corresponding stress relaxation, and there are two noticeable

differences in the results from the poroelastic calculation performed at the same

strain rate (Figure 5.19). Firstly, stemming from the initially-high relative velocity

between the phases, the poroelastic curve starts with a higher stiffness than the

viscoelastic case. And secondly, the quasistatic nature of the poroelastic calculation

results in a sharper, more rapidly-decaying peak in stress.

6Refer Section 4.2.4 for details.
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Figure 5.18: Quasistatic poroelastic model, ǫ̇ = 0.01 Hz, D = 1.037 MPa.s.mm−2.
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Figure 5.19: Quasistatic poroelastic model, ǫ̇ = 0.02 Hz, D = 1.037 MPa.s.mm−2.
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Figure 5.20: Dynamic viscoelastic model, ǫ̇ = 0.02 Hz, τ = 0.3 s.

5.3.2 Hysteresis in the cyclic stress-strain response

The examples in this section study the hysteresis in the stress-strain response

when the model is subjected to a complete load-unload cycle. As before, for the

solid phase, the boundary conditions specify that one of the longitudinal edges of the

tissue is held fixed, while subjecting the other to the suitable displacement condition.

The lateral edges of the solid remain traction free. For the fluid, there is no flow

relative to the solid at the longitudinal edges, i.e., vf = vc. The lateral edges expose

the fluid to the bath, and therefore the fluid pressure is equated to that of the bath,

0 MPa, along those edges.

In all these tests, the model was first loaded to a maximum strain of 0.085 (to

match the experimental data presented in Figure 5.17) and subsequently unloaded

to no strain. Since the numerical experiments so far have suggested conspicuous

differences between the quasistatic and dynamic solutions, both these cases have
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been explored in this section. When the fluid flow fields are observed during the

course of these load-unload tests, it is found that they constantly lag behind the

motion of the solid; and it is this relative velocity, and the corresponding frictional

interaction between the phases, that leads to energy dissipation manifesting itself as

the hysteresis loop.

For the quasistatic hysteresis curve presented in Figure 5.21, the model was loaded

at a rate of ǫ̇ = 0.01 Hz for 8.5 s to a total strain of 0.085, and then subsequently

unloaded at the same rate back to 0 strain in another 8.5 s. This discontinuous (in

time) velocity boundary condition for the fluid is acceptable for the quasistatic calcu-

lation. When compared to the hysteresis result arising from the dynamic calculation

loaded and unloaded at the same average strain rate (Figure 5.22),7 it is clear once

more that the quasistatic calculation lacks the characteristic oscillations arising from

pressure wave propagation in the fluid observed in the dynamic calculation. It is also

interesting to note that beyond a certain strain (∼0.06), the solid is stiff enough to

overcome the oscillatory effects arising from the fluid flow.

When this average strain rate is decreased to ¯̇ǫ = 0.001 Hz, (1/10th the rate

of the preceding calculation), the relative velocity between the phases correspond-

ingly decreases, resulting in reduced dissipation and area of the hysteresis loop (see

Figure 5.23). In other words, this slower process proceeds closer to thermodynamic

equilibrium. In an analogous comparison, when the average strain rate is maintained

at ¯̇ǫ = 0.01 Hz, but the magnitude of the frictional coefficient tensor is increased by a

factor of 10 to D = 10.37 MPa.s.mm−2, it is observed that the dynamic effects of the

7Since the uniform strain rate load-unload displacement condition prescribed for the quasistatic
calculation (termed the triangular load) is insufficiently smooth in time, the dynamic calculations
are instead subjected to a load-unload displacement that takes the shape of a cosine curve. This
displacement condition reaches the same maximum strain and unloads to no strain at the same
times as the triangular load, but maintains the necessary smoothness in the velocity fields to allow
for the dynamic calculations.
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fluid flow are much more prominent (as observed in Figure 5.24). This is because the

comparable strain rates ensure similar relative velocities between the phases (in the

calculations corresponding to Figures 5.22 and 5.24), but the frictional interaction

between the fluid and solid phases has now increased by an order of magnitude.

The results presented in this section demonstrate aspects of the experimentally

observed mechanical response of ligaments seen in Figure 5.17. Finally, the biphasic

poroelastic results presented thus far are compared to the response of the purely

linear viscoelastic model introduced in the preceding section. This model was loaded

at a strain rate of ǫ̇ = 0.01 Hz for 8.5 s to a total strain of 0.085, and then subsequently

unloaded at the same rate back to 0 strain in another 8.5 s. The resulting stress-strain

curve is shown in Figure 5.25. Upon comparing it with Figure 5.22, we find as we

did before, that, stemming from the initial frictional interaction between the phases,

the poroelastic case starts out stiffer, and the viscoelastic model fails to capture any

of the dynamic effects arising from the fluid flow.
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Figure 5.21: Quasistatic poroelastic model, ǫ̇ = 0.01 Hz, D = 1.037 MPa.s.mm−2.
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Figure 5.22: Dynamic poroelastic model, ¯̇ǫ = 0.01 Hz, D = 1.037 MPa.s.mm−2.
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Figure 5.23: Dynamic poroelastic model, ¯̇ǫ = 0.001 Hz, D = 1.037 MPa.s.mm−2.
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Figure 5.24: Dynamic poroelastic model, ¯̇ǫ = 0.01 Hz, D = 10.37 MPa.s.mm−2.
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Figure 5.25: Dynamic viscoelastic model, ǫ̇ = 0.01 Hz, τ = 0.3 s.
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5.4 Mechanics and the growing tumour

This final section presents a preliminary foray into tailoring the mathematical

formulation developed in Chapter 4 to studying the mechanics of growing tumours.

Unlike the computations presented in the preceding sections, which principally fo-

cused on the biphasic mechanics of soft tissues in the absence of biochemical inter-

actions between the phases (tissue growth), in examples that follow, we will turn

our attention to an idealisation of growing tumours, and examine the role of the

mechanical environment on its growth.

Similar to the approach followed in Section 5.2, the computations presented be-

low serve only to demonstrate aspects of the coupled physics underlying the problem,

and the actual constitutive modelling choices made (and the corresponding numer-

ical parameters used) are not intended for direct comparison with experiment. In-

corporating more realistic modelling choices (such as the use of more sophisticated

biochemistry involving additional species (Jackson and Byrne, 2000)), and the as-

certainment of corresponding parameters, is a direction for future work.

The computations presented in this section are motivated by and aim to replicate

a fundamental experimental observation: Compressive solid stress along a given

direction restricts the in vitro growth of tumours along that direction (Helmlinger

et al., 1997). The foundational examples discussed in Sections 5.4.1–5.4.4 focus on

different aspects of this confined tumour growth problem, and a combination of all

these phenomena are manifested in the final computation presented in Section 5.4.5.

The computational model used in this section is primarily a solid comprised of

an extra-cellular matrix (ECM) and tumour cells capable of moving with respect to

this matrix.8 In order to simplify the scenario, it is assumed that the solute phases,

8We have already studied the effects of the extra-cellular fluid flow on the mechanics in some
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such as the nutrients and enzymes, are present in sufficient amounts to drive the

biochemistry that allows the cells to proliferate and produce more ECM. The model

geometry, as visualised in Figure 5.26, is semicircular and has a radius of 10 mm

initially.

5.4.1 Kinematic swelling concomitant with growth

In this initial calculation, we focus on the kinematic swelling associated with an

increase in the mass of the solid tumour. The isotropic swelling tensor introduced in

Section 2.2 has been modified to,

(5.3) F gc

=




(
ρc0
ρc0ini

)1/2

0 0

0
(

ρc0
ρc0ini

)1/2

0

0 0 1



,

since we are working in two dimensions under a plane strain setting.

This example solves the mass (2.2) and momentum balance (2.7) equations for

the solid (comprised at this point of both cells and the matrix) in the reference

configuration. The boundary conditions for the momentum balance equations only

prevent rigid body motion of the domain, and do not constrain its deformation

in any way. The mass balance equation is solved with a uniform source term

Πc = 0.001 kg.m−3/day. The initial solid concentration is ρc
0ini

= 1 kg.m−3.

As a result of this uniform mass source, and the increasing solid concentration,

the domain begins to swell. Figures 5.26 and 5.27 show the tumour initially, and after

100 days. The colour contours provide the radial displacement of the solid in mm,

and the arrows provide the direction of its velocity. Since there are no constraints on

detail in the preceding sections. Since we are currently focusing on other phenomena, we have
chosen to ignore the fluid here.
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the deformation, this swelling is isotropic. Figure 5.28, shows the area of the domain

increasing linearly in time over the duration of the computation. Note that the ratio

of the final to initial areas 172.788 mm2/157.08 mm2 is exactly the same as the ratio

of the final to initial concentrations 1.1 kg.m−3/1 kg.m−3, as one would expect.

Figure 5.26: A semicircular tumour at time t = 0 days.

5.4.2 A constraining wall and soft contact mechanics

We are interested in subjecting this solid tumour model to a compressive stress,

and the way we impose this condition is to introduce a rigid wall 10.5 mm to the right

of the vertical edge of the domain, and allowing the swelling tumour to impinge upon

it. Recall that the initial radius of the semicircular domain is 10 mm, thus giving it

0.5 mm to grow before it contacts the wall.

For this calculation, the solid is assumed to be hyperelastic with the Mooney-

Rivlin strain energy function (5.2) with constants C10 = 0.37 and C10 = 0.11 MPa.

As in the previous calculation, the balance of mass and momentum for this growing
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Figure 5.27: A semicircular tumour at time t = 100 days.
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Figure 5.28: The area of the tumour evolving over 100 days.
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solid are solved in the reference configuration. Since we are solving the momentum

balance with dynamics, we cannot introduce the rigid wall instantaneously, as this

results in time-discontinuous solid velocity fields. We instead use the following “soft”

contact mechanics model,

(5.4) q = −A exp(−Bg),

where q is the horizontal traction force induced by the wall, g is the gap between the

wall and the approaching tumour, and A and B are parameters associated with the

contact model that control the magnitude of the force, and how sharply the force

rises as the tumour approaches the wall, respectively. This model ensures that the

velocity fields on the impinging boundary of the tumour remain smooth in time.

Starting with the same initial conditions as the previous test (Figure 5.26), Fig-

ure 5.29 depicts the compressive horizontal stress built-up in the solid after 120 days

due to the presence of the wall (not visible in the figure). Notice that the velocity

vectors are much smaller in the constrained direction. Figure 5.30 shows the time

evolution of the compressive horizontal stress at a point near the extreme right of the

domain. The stress increases sharply as the point gets close to the wall, but remains

smooth in time.
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Figure 5.29: The growing tumour constrained by a wall at time t = 120 days.
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Figure 5.30: The horizontal stress in the tumour evolving over 120 days.
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5.4.3 The mechanics of the cells

In order to observe just the gross kinematic swelling associated with an increase in

the mass of the tumour, we have treated the tumour thus far as a homogenous solid,

not distinguishing between the cells and the ECM. In this section, we turn off the

growth process, and begin to differentiate between the species by decomposing the

total solid stress into two parts: a “passive” stress associated with the hyperelastic

response of the ECM, and an “active” stress, associated with the cellular traction

forces on the surrounding medium:

(5.5) σc =
1

J

ρc
0

ρ̃c
0

∂ψ̂c

∂F
F T

︸ ︷︷ ︸
Passive

+ τ ρcρcell(N − ρcell) 1.︸ ︷︷ ︸
Active

This decomposition, as well as other modelling choices made in the remaining calcu-

lations, is based on the modelling work of Namy et al. (2004). Here, τ is a parameter

that monitors the individual cellular traction amplitude, ρc and ρcell are the cur-

rent concentrations of the ECM and the cells, respectively, and N is a real, positive

constant (N > ρcell) that controls the cell traction inhibition when the cell density

increases. The model assumes that the active stresses are proportional to the ECM

concentration, and that there is a critical concentration of cells at which this active

stress is maximum.

Assuming the following uniform distribution of cells and ECM, ρcell = 0.5 kg.m−3

and ρc = 1 kg.m−3, and the values for the constants τ = 1000 MPa.kg−3.m9 and

N = 1 kg.m−3, Figure 5.31 shows the cells uniformly pulling the matrix inward. The

colour contours provide the radial displacement of the ECM. A similar calculation was

performed with the non-uniform distribution of cells (ranging between 1.18 kg.m−3

and 4.72 kg.m−3) shown in the colour contours in Figure 5.32, and the deformed
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domain shows the corresponding deformation of the ECM. Notice that the regions

of higher cell concentrations pull their surrounding ECM neighbourhoods in greater.

Figure 5.31: Homogeneous inward pull due to a uniform distribution of cells.

Figure 5.32: Heterogeneous traction due to a non-uniform distribution of cells.
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5.4.4 The transport of the cells

In the calculations presented in the preceding section, the cell concentrations were

fixed spatially and temporally. In this section, we allow for the cells to proliferate

and move via diffusion and haptotaxis (again, following the work of Namy et al.

(2004)). We solve the mass transport equation (4.2) for the cells to determine their

current concentration fields. In order to account for the aforementioned modes of

mass transport, we specify the following constitutive form for the cell mass flux:

(5.6) ρcell vcell = h ρcell grad (ρc)︸ ︷︷ ︸
Haptotactic flux

−Dcell grad
(
ρcell
)

︸ ︷︷ ︸
Cell diffusion

,

where h is the haptotactic coefficient and Dcell is the diffusivity of the cells in the

matrix. In this section, we are primarily interested in observing the proliferation and

transport of the cells, and so we do not associate any kinematics with the changing

cell concentration.

In the first set of results, we look at cell proliferation and diffusion, and observe

the effect that this has on the traction that they apply on their ECM neighbour-

hoods. Starting with a cell-rich circle of radius 5 mm at the centre of the domain

(having a uniform cell concentration of 6.266 kg.m−3), and a smaller cell concentra-

tion (3.778 kg.m−3) at other points on the domain; and using a uniform cell source

πcell = 0.001 kg.m−3/day and a diffusion coefficient of Dcell = 0.01 mm2/day, Fig-

ures 5.33–5.36 show the snapshots of the diffusing and proliferating cells during the

course of the test. The colour contours provide the evolving cell concentration fields

(in kg.m−3) and the arrows provide the deformation direction of the ECM induced

by the cell traction.
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Figure 5.33: The cells diffusing and proliferating at time t = 0 days.

Figure 5.34: The cells diffusing and proliferating at time t = 33 days.
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Figure 5.35: The cells diffusing and proliferating at time t = 67 days.

Figure 5.36: The cells diffusing and proliferating at time t = 100 days.
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In the second set of results, we look at cell proliferation and haptotaxis, and

observe the effect that this has on the traction that the cells apply on their ECM

neighbourhoods. We start this test with the same initial conditions for the cells as

the previous calculation (a cell-rich bulb at the centre of the domain), but in order

to induce haptotaxis, we begin with the heterogenous ECM concentration (varying

between 0.5 kg.m−3 and 1.5 kg.m−3), seen in Figure 5.37. In these tests, the hapto-

tactic coefficient h is 0.1 mm2.day−1.mm3.kg−1. Figures 5.38–5.41 show snapshots of

the cells undergoing haptotaxis and proliferating during the course of the test. The

colour contours provide the evolving cell concentration fields (in kg.m−3) and the

arrows provide the deformation direction of the ECM, induced by the cell traction.

We observe that the cells migrate toward areas of higher ECM while proliferating.

Note that the directionality of the cell traction field changes correspondingly with

the concentration field, as noted by the lengths and directions of the arrows.

Figure 5.37: Heterogeneous extra-cellular matrix concentration (kg.m−3).
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Figure 5.38: Proliferating cells undergoing haptotaxis at time t = 0 days.

Figure 5.39: Proliferating cells undergoing haptotaxis at time t = 33 days.
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Figure 5.40: Proliferating cells undergoing haptotaxis at time t = 67 days.

Figure 5.41: Proliferating cells undergoing haptotaxis at time t = 100 days.
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While the magnitudes for the cell diffusivity, Dcell, and haptotactic coefficient, h,

are arbitrarily chosen, following the experimental data cited in Namy et al. (2004),

the numerical value assumed for h is an order of magnitude greater than that assumed

for Dcell, which ensures that when the two modes for mass transport are combined,

haptotaxis is the dominant mechanism.

5.4.5 Coupling the phenomena

With the individual phenomena explored, we are now ready to solve the coupled

problem described initially. The range of physics incorporated into this problem

include proliferating cells undergoing both diffusion and haptotaxis, a rate law for

the production of additional ECM which scales linearly with the concentration of

cells, the stress within the cells induced by their traction, the hyperelastic response

of the ECM, isotropic kinematic swelling associated with the increase in tumour

mass, and finally, this swelling constrained by the presence of a wall.

Figures 5.42–5.47 show snapshots of the growing tumour constrained by the wall.

The colour contours provide the x-displacement of the swelling tumour and the arrows

provide the direction of the velocity field. Observe that regions having a higher cell

concentration due to haptotaxis (refer Figures 5.38–5.41) tend to swell faster than

regions with lower cell concentrations. Also observe that due to the presence of

the wall, even as early as 20 days, the velocities are biased toward the vertical

direction. Finally, upon comparing these constrained tumour growth snapshots with

Figure 5.48, which is a result of a similar calculation without the wall, it is clear that

the presence of the compressive stress along a direction inhibits growth along that

direction, which is what we were aiming to see.
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It must be reiterated here that the results provided in this section are only to

demonstrate that varying classes of physics can be incorporated into the existing

mathematical and computational formulation. These results have been obtained

using an isotropic growth law (5.3), without requiring the stress-dependent time

rate of the growth portion of the deformation gradient derived in Section 4.2.5. It

is not yet clear whether the constraint from the mechanical loads just deforms the

tissue and distorts its shape, or whether the cells have some ability to sense the

local stress state and this affects directionality of further growth. More research into

experimental literature is needed before a conclusive statement can be made.

Figure 5.42: A constrained growing tumour at t = 0 days.
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Figure 5.43: A constrained growing tumour at t = 20 days.

Figure 5.44: A constrained growing tumour at t = 40 days.
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Figure 5.45: A constrained growing tumour at t = 60 days.

Figure 5.46: A constrained growing tumour at t = 80 days.
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Figure 5.47: A constrained growing tumour at t = 100 days.

Figure 5.48: An unconstrained growing tumour at t = 80 days.



CHAPTER 6

Concluding remarks

This dissertation presented a number of significant enhancements to our original

growth formulation presented in Garikipati et al. (2004). With the reformulation

of the theory in an Eulerian setting in Chapter 4, the governing equations for the

fluid phase are now recast in terms of the fluid concentration, velocity and pressure;

primitive variables that are natural to fluid mechanics. This, along with the revised

computational formulation that solves the momentum balance equations for each

species separately, retaining all aspects of the coupling between the equations, has

rapidly led to the establishment of a practical environment to study the biphasic me-

chanics response of soft tissues. While the computational examples presented in this

dissertation focused mostly on the interaction between elastic phases, it has proven

straightforward to extend it to more involved cases, such as studying the flow of a

viscous fluid through a porous, hyperelastic solid. Thus, the computational formu-

lation potentially provides a means to systematically explore the various sources of

rate-dependent behaviour in soft tissues: the viscoelastic deformation of the colla-

gen network, the viscosity of the extra-cellular fluid, frictional effects arising from

stress-driven fluid flow through the network, as well as suitable combinations of these

effects.

Carefully revisiting the assumptions underlying the behaviour of mixtures, and

taking a close look anew at the Dissipation-Inequality, in an attempt at constitu-

141
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tive specification to satisfy it a priori, brought to light some new, key, constitutive

relations. This is another significant aspect of this work.

One key relationship was for the mass interconversion terms that suggested that

it is the energetic difference between the reactants and the products of a chemical

reaction that drive the reaction forward; a well-established concept in chemistry.

This broad guideline allows for the specification of a very general class of source

terms representing varying kinds of biochemistry, yet retaining consistency with the

thermodynamics.

Perhaps the most exciting result that arose from this analysis of the implications

of the Dissipation-Inequality was the dissipation-driven growth tensor presented in

Section 4.2.5. Experimental work on wound healing in ligaments (Provenzano et al.,

2003) and stress-based inhibition of tumour growth (Helmlinger et al., 1997) seems

to suggest that the processes underlying biological growth are dependent upon the

local stress field in a related manner. However, a direct correlation with experiment,

if found, will be a manifestation in Biology of a phenomenon that is common in

Materials Physics.
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APPENDIX A

A review of mathematical results

The following sections catalogue some classical mathematical results that have

been frequently called-upon during the course of the development of the theoretical

formulation in Chapters 2 and 4.1

A.1 Gauss-Green’s divergence theorem

Let Ω ⊂ Rn be a bounded open set with a C1 boundary, let νΩ : ∂Ω → Rn be

the exterior unit normal vector to Ω at a point x and let v : Ω → Rn be a vector

function in C0(Ω,Rn) ∩ C1(Ω,Rn). Then,

∫

Ω

divv(x) dx =

∫

∂Ω

〈v(x),νΩ(x)〉 dσ(x).

Here, the operator divv is the divergence of the vector field v, and is denoted

as DIV (v) and div (v) in the reference and current configurations, respectively, in

the main body of this dissertation. The term dσ in the surface integral on the

right hand-side is the area measure corresponding to ∂Ω. In the main body of this

dissertaton, the scalar product in the second integral is written as v·N and v·n when

1The material presented in Appendix A is covered under the GNU Free Documentation License
(See http://www.gnu.org/copyleft/). This affords the reader the freedom to copy and redistribute
the matter with or without modification, either commercially or noncommercially.

http://www.gnu.org/copyleft/
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working with quantities in the reference and current configurations, respectively, and

represents the normal component of v with respect to ∂Ω; hence the whole integral

represents the flux of the vector v through ∂Ω.

The theorem as stated for the vector function v can be extended to the following

forms which prove useful in the development of the theory:

∫

Ω

gradv(x) dx =

∫

∂Ω

v(x) ⊗ νΩ(x) dσ(x),

∫

Ω

curlv(x) dx =

∫

∂Ω

v(x) × νΩ(x) dσ(x), and

∫

Ω

divT (x) dx =

∫

∂Ω

T (x) νΩ(x) dσ(x),

where T : Rn → Rn is a tensor function.

A.2 Reynolds’ transport theorem

Introduction Reynolds’ transport theorem (Reynolds, 1903) is a fundamental

theorem used in formulating the basic laws of fluid mechanics. For our purpose,

let us consider a fluid flow, characterised by its streamlines, in the Euclidean vector

space (R3, ‖·‖). Embedded in this, we consider a continuum body B occupying a

volume V whose particles are fixed by their material (Lagrangian) coordinates X,

and a control volume v, bounded by the control surface ∂v, whose points are fixed

by their spatial (Eulerian) coordinates, x.

Definition 1. We define an extensive tensor property by the expression

Ψ(x, t) :=

∫

v

ψ(x, t)ρ(x, t)dv,(A.1)

where ψ(x, t) is the respective intensive tensor property.
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Theorem’s hypothesis The kinematics of the continuum can be described by

a diffeomorphism χ which, at any given instant t ∈ [0,∞) ⊂ R, gives the spatial

coordinates x of the material particle X,

V × [0,∞) → v × [0,∞), t 7→ t, X 7→ x = χ(X, t).

Indeed the above sentence corresponds to a change of coordinates which must verify

J =

∣∣∣∣
∂xi
∂Xj

∣∣∣∣ ≡
∣∣Fij
∣∣ 6= 0, Fij :=

∂xi
∂Xj

,

J being the Jacobian of transformation (dv = JdV ) and Fij, the Cartesian compo-

nents of the deformation gradient tensor F.

Theorem The material rate of an extensive tensor property associated with a

continuum body B is equal to the local rate of the property in a control volume v

plus the efflux of the respective intensive property across its control surface ∂v.

Proof. By taking on Equation (A.1) the material time derivative, and applying

Gauss-Green’s Divergence Theorem, we have,

DΨ

Dt
=

˙∫

v

ψρ dv =
˙∫

V

ψρJdV =

∫

V

˙ψρJdV =

∫

V

(ψ̇ρJ + ψρJ̇)dV =

∫

V

{
J
[ ∂
∂t

(ψρ) + v·∇x(ψρ)
]

+ ψρ (J∇x ·v)
}
dV =

∫

V

{[ ∂
∂t

(ψρ)
]

+
[
v·∇x(ψρ) + (ψρ)∇x ·v

]}
(JdV )

=

∫

v

∂

∂t
(ψρ)dv +

∫

v

∇x ·(ψρ v)dv =
∂

∂t

∫

v

ψρ dv +

∫

∂v

ψρv·n da,

Finally, by using Equation (A.1) on the first integral in the right hand-side of the

last line, we obtain
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Ψ̇ =
∂Ψ

∂t
+

∫

∂v

ψρv·n da,(A.2)

endorsing the theorem statement.
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APPENDIX B

Supplementary topics

B.1 Frame invariance and flux contribution from acceleration

In our earlier treatment (Garikipati et al., 2004), the constitutive relation for the

fluid flux had a driving force contribution arising from the acceleration of the solid

phase, −ρf
0F

T ∂V
∂t

. This term, being motivated by the reduced dissipation inequality,

does not violate the Second Law and supports an intuitive understanding that the

acceleration of the solid skeleton in one direction must result in an inertial driving

force on the fluid in the opposite direction. However, as defined, this acceleration is

obtained by the time differentiation of kinematic quantities,1 and does not transform

in a frame-indifferent manner. Unlike the superficially similar term arising from the

gravity vector,2 the acceleration term presents an improper dependence on the frame

of the observer. Thus, its use in constitutive relations is inappropriate, and the term

has been dropped in Equation (2.33).

1And not in terms of acceleration relative to fixed stars for e.g., as discussed in (Truesdell and
Noll, 1965, Page 43).

2Where every observer has an implicit knowledge of the directionality of the field relative to a
fixed frame, allowing it to transform objectively. Specifically, under a time-dependent rigid body
motion imposed on the current configuration carrying x to x+ = c(t) + Q(t)x, where c(t) ∈ R

3

and Q(t) ∈ SO(3), it is understood that the acceleration due to gravity in the transformed frame is
g+ = QTg and is therefore frame-invariant. However, a+ = c̈ + 2Q̇v + Q̈x + Qa , and is therefore
not frame-invariant.
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B.2 Stabilisation of the simplified solute transport equation

In weak form, the SUPG-stabilised method (Hughes et al., 1987) for Equa-

tion (2.48) is,

∫

Ω

wh

(
dρsh

dt
+ mf · grad

[
ρsh

ρf

])
dΩ

+

∫

Ω

(
grad

[
wh
]
· D̄sgrad

[
ρsh
])

dΩ

+

nel∑

e=1

∫

Ωe

τ
mf

ρf
· grad

[
wh
]
(

dρsh

dt
+ mf · grad

[
ρsh

ρf

])
dΩ

−

nel∑

e=1

∫

Ωe

τ
mf

ρf
· grad

[
wh
] (

div
[
D̄s grad

[
ρsh
]])

dΩ

=

∫

Ω

whπs dΩ +

∫

Γh

whh dΓ

+

nel∑

e=1

∫

Ωe

τ
mf

ρf
· grad

[
wh
]
πs dΩ,

(B.1)

where quantities with the superscript h represent finite-dimensional approximations

of infinite-dimensional field variables, Γh is the Neumann boundary, and this equa-

tion introduces a numerical stabilisation parameter, τ , which we calculate from the

L2 norms of element level matrices, as described in Tezduyar and Sathe (2003).
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